The features of acoustic-gravity waves in the polar regions of the Earth’s thermosphere

1Kryuchkov, YI, 1Cheremnykh, OK, 1Fedorenko, AK
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(3):41-53
https://doi.org/10.15407/kfnt2017.03.041
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

The features of acoustic-gravity waves in the polar regions of the Earth's thermosphere are studied. It is shown that the change of AGW amplitudes occurs in the polar thermosphere against the background of large-scale rotational movements of the medium. The amplitudes of waves amplifies with AGW propagation against moving and reduces when AGW propagates towards rotation. An analytical expression for the gain coefficient of AGW perturbations is obtained, with which the numerical evaluation of the wave's amplification effect in headwind with the characteristic parameters of the thermosphere is realized. These results are consistent with measurements of AGW parameters in the polar regions on the Dynamic Explorer 2 satellite.

Keywords: acoustic-gravity waves, Earth’s polar thermosphere
References: 

1.V. V. Akimenko and O. K. Cheremnykh, “Modeling of vortical flows on a background of 2-dim convective thermo-mass-exchange process,” J. Autom. Inf. Sci. 36 (2), 64–80 (2004).

2.E. I. Kryuchkov and A. K. Fedorenko, “Peculiarities of energy transport in the atmosphere by acoustic gravity waves,” Geomagn. Aeron. (Engl. Transl.) 52, 235–241 (2012).
https://doi.org/10.1134/S0016793212010057

3.Yu. P. Ladikov-Roev and O. K. Cheremnykh, Mathematical Models of Continuous Media (Naukova Dumka, Kyiv, 2010) [in Russian].

4.Yu. P. Ladikov-Roev, O. K. Cheremnykh, A. K. Fedorenko, and V. E. Nabivach, “Acoustic-gravity waves in whirling polar thermosphere,” J. Autom. Inf. Sci. 47 (9), 10–22 (2015).
https://doi.org/10.1615/JAutomatInfScien.v47.i9.20

5.M. G. Lighthill, Waves in Fluids (Cambridge Univ. Press, Cambridge, 1978; Mir, Moscow, 1981).

6.L. D. Landau and E. M. Lifshits, A Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

7.A. K. Fedorenko and E. I. Kryuchkov, “Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data,” Geomagn. Aeron. (Engl. Transl.) 51, 520–533 (2011).
https://doi.org/10.1134/S0016793211040128

8.A. K. Fedorenko and E. I. Kryuchkov, “Wind control of the propagation of acoustic gravity waves in the polar atmosphere,” Geomagn. Aeron. (Engl. Transl.) 53, 377–388 (2013).
https://doi.org/10.1134/S0016793213030055

9.O. K. Cheremnykh, “On the motion of vortex rings in an incompressible media,” Nelineinaya Din. 4, 417–428 (2008).
https://doi.org/10.20537/nd0804003

10.O. K. Cheremnykh, Yu. A. Selivanov, and I. V. Zakharov, “The effect of atmosphere’s compressibility and nonisothermicity on the propagation of acoustic-gravity waves,” Kosm. Nauka Tekhnol. 16, 9–19 (2010).
https://doi.org/10.15407/knit2010.01.009

11.A. K. Fedorenko, A. V. Bespalova, O. K. Cheremnykh, and E. I. Kryuchkov, “A dominant acoustic-gravity mode in the polar thermosphere,” Ann. Geophys. 33, 101–108 (2015).doi doi 10.5194/angeo-33-101-2015
https://doi.org/10.5194/angeo-33-101-2015

12.D. C. Fritts and T. S. Lund, “Gravity wave in fluences in the thermosphere and ionosphere: Observations and recent modeling,” in Aeronomy of the Earth’s Atmosphere and Iono-Sphere, Ed. by M. A. Abdu, D. Pancheva, and A. Bhattacharyya (Springer-Verlag, Dordrecht, 2011). pp. 109–130. doi 10.1007/978-94-007-0326-18
https://doi.org/10.1007/978-94-007-0326-1_8

13.C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960).
https://doi.org/10.1139/p60-150

14.R. D. Hunsucker, “Atmospheric gravity waves generated in the high-latitude ionosphere: A review,” Rev. Geophys. Space Phys. 20, 293–315 (1982).
https://doi.org/10.1029/RG020i002p00293

15.T. L. Killeen, Y. I. Won, R. J. Nicieyewski, and A. G. Burns, “Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic fields dependencies,” J. Geophys. Res.: Space Phys. 100, 21327–21342 (1995).
https://doi.org/10.1029/95JA01208

16.H. Lühr, S. Rentz, P. Ritter, H. Liu, K. Häusler, “Average thermospheric wind patterns over the polar regions, as observed by CHAMP,” Ann. Geophys. 25, 1093–1101 (2007). http://www.ann-geophys.net/25/1093/2007.
https://doi.org/10.5194/angeo-25-1093-2007

17.C. J. Nappo, An Introduction to Atmospheric Gravity Waves (Academic, San Diego, 2002).

18.Yu. G. Rapoport, O. K. Cheremnykh, Yu. A. Selivanov, A. K. Fedorenko, V. M. Ivchenko, V. V. Grimalsky, E. N. Tkachenko, “Modeling AGW and PEMW in inhomogeneous atmosphere and ionosphere,” in Proc. 2012 Int. Conf. of Mathematical Methods in Electromagnetic Theory (MMET 2012), Kharkiv, Ukraine, Aug. 28–30, 2012 (IEEE, 2012), pp. 577–580, paper id. 6331225.
https://doi.org/10.1109/MMET.2012.6331225

19.S. L. Vadas and D. C. Fritts, “Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity,” J. Geophys. Res.: Atmospheres 110, D15103 (2005). doi 10.1029/2004JD005574
https://doi.org/10.1029/2004JD005574

20.S. L. Vadas and M. J. Nicolls, “The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory,” J. Geophys. Res.: Space Phys. 117, A05322 (2012). doi doi 10.1029/2011JA017426
https://doi.org/10.1029/2011JA017426

21.E. Yiğit, A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris, “Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause,” J. Geophys. Res.: Atmospheres 114, D07101 (2009). doi 10.1029/2008JD011132
https://doi.org/10.1029/2008JD011132

22.S. D. Zhang and F. Yi, “A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere,” J. Geophys. Res.: Atmospheres 107, 4222 (2002). doi 10.1029/2001JD000864
https://doi.org/10.1029/2001JD000864