Exocomet activity around the stars at different evolution stages: current issues

Pavlenko, YV, Shubina, OC, Kulyk, IV, Kuznyetsova, YG, 1Zakhozhay, OV, 1Korsun, PP, 1Borysenko, SA, Krushevska, VM, 2Andreev, MV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2International Center for Astronomical, Medical and Ecological Research of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(2):19-40
https://doi.org/10.15407/kfnt2021.02.019
Start Page: Physics of Stars and Interstellar Medium
Language: Ukrainian
Abstract: 

Modern theories of planetary system formation predict a large population of planetesimals, which are remnants of the primordial matter of the protoplanetary cloud and, at the same time, embryos of small bodies that we observe in our solar system. The planetesimals play an important role in the dynamic and physical evolution of the planetary system. Gravitational scattering of planetesimals which are enriched by volatile elements formed in planets at the early stages of the dynamic evolution of the system might cause these volatile and organic compounds to enter the interior of the planetary system, triggering the formation of planetary atmospheres and further development of life. Small bodies inside planetary systems can evaporate due to the increasing insolation at close distances from the mother star, leading to the development of activity akin to the activity of comets in our solar system. The study of cometary activity in our solar system is aimed primarily at the investigation of the physical processes in the early stages of the development of the protoplanetary cloud. Until recently, it was not possible to study small bodies in other planetary systems because their small size makes it very difficult to detect by direct methods. Over the past 10 years, two space missions, Kepler and TESS (The Transiting Exoplanet Survey Satellite), have been equipped for continuous photometric monitoring to find exoplanets by transit, i. e. monitoring the changes in brightness of a star due to the passage of a smaller object across its disk. The presence of high-precision photometric measurements of the brightness curves of about 200,000 stars, which are available in the public domain, potentially makes it possible to identify rather small changes in the brightness curves of stars due to the passage of a body with gas-dust coma (exocomet) across the stellar disk. The article considers a number of issues related to the discovery and study of exocomets. The main detection methods based on the analysis of photometric and spectral series of observational data of space missions as well as ground-based observational complexes are considered. We provide a brief review of the main projects devoted to the results of theoretical modeling and experimental studies of the manifestations of exocometic activity. Known cases of manifestations of exocometic activity in planetary systems of stars of different spectral classes are described and the main characteristics of such stars and their planetary systems are given. We discuss the prospects for further research of these still very exotic objects. The importance of such research for understanding evolutionary processes in our own solar system is emphasized.

Keywords: comets, minor planets; eclipses, occultations, planetary systems, planets and satellites
References: 

1. Baglin A., Auvergne M., Barge P., et al. (2006) Scientific Objectives for a Minisat: CoRoT. The CoRoT mission pre-launch status — stellar seismology and planet finding, eds.: M. Fridlund, A. Baglin, J. Lochard, L. Conroy. ESA Publications Division. 33.

2. Bardyn A., Baklouti D., Cottin H., et al. (2017) Carbon-rich dust in comet 67P/Churyumov- Gerasimenko measured by COSIMA/Rosetta. Mon. Notic. Roy. Astron. Soc. 469. S712—S722.
https://doi.org/10.1093/mnras/stx2640

3. Bar-Nun A., Laufer D., Rebolledo O., et al. (2013) Gas trapping in ice and its release upon warming. 356. 487.
https://doi.org/10.1007/978-1-4614-3076-6_14

4. Bennett D. P., Anderson J., Beaulieu J. P., et al. (2007) An extrasolar planet census with a space-based microlensing survey. arXiv e-prints. arXiv:0704.0454.

5. Beust H., Lagrange-Henri A. M., Madjar A. V., Ferlet R. (1990) The beta Pictoris circumstellar disk. X. Numerical simulations of infalling evaporating bodies. Astron. and Astrophys. 236. 202.

6. Biver N., BockelJe-Morvan D., Paubert G., et al. (2018) The extraordinary composition of the blue comet C/2016 R2 (PanSTARRS). Astron. and Astrophys. 619. A127.
https://doi.org/10.1051/0004-6361/201833449

7. Borucki W. J., Koch D., Basri G., et al. (2010) Kepler planet-detection mission: Introduction and first results. Science. 327(5968). 977.
https://doi.org/10.1126/science.1185402

8. Borucki W. J., Summers A. L. (1984) The photometric method of detecting other planetary systems. Icarus. 58(1). 121—134.
https://doi.org/10.1016/0019-1035(84)90102-7

9. Borysenko S., Baransky A., Kuehrt E., et al. (2020) Study of the physical properties of selected active objects in the main belt and surrounding regions by broadband photometry. Astron. Nachr. 341(9).
https://doi.org/10.1002/asna.202013765

10. Boyajian T. S., LaCourse D. M., Rappaport S. A., et al. (2016) Planet Hunters IX. KIC 8462852 — where’s the flux? Mon. Notic. Roy. Astron. Soc. 457(4). 3988—4004.
https://doi.org/10.1093/mnras/stw218

11. Ceccarelli C., Caux E., Wolfire M., et al. (1998) ISO detection of CO(+) toward the protostar IRAS 16293-2422. Astron. and Astrophys. 331. L17—L20.

12. Cevolani G., Bortolotti G., Hajduk A. (1987) Debris from comet Halley, comet’s mass loss and age. Nuovo cim. C Geophys. Space Phys. C. 10. P. 587—591.
https://doi.org/10.1007/BF02507255

13. Christiansen J. L., Jenkins J. M., Caldwell D. A., et al. (2012) The derivation, properties, and value of Kepler’s combined differential photometric precision. Publ. Astron. Soc. Pacif. 124(922). 1279.
https://doi.org/10.1086/668847

14. Clarke B. D., Caldwell D. A., Quintana E. V., et al. (2017) Kepler data processing handbook: Pixel level calibrations. Kepler Science Document KSCI-19081-002.

15. Cochran A. L., Levasseur-Regourd A.-C., Cordiner M., et al. (2015) The composition of comets. Space Sci. Rev. 197(1-4). P. 9—46.
https://doi.org/10.1007/s11214-015-0183-6

16. Combi M. R., Lee Y., Patel T. S., et al. (2011) SOHO/SWAN Observations of short-period spacecraft target comets. Astron. J. 141(4). 128.
https://doi.org/10.1088/0004-6256/141/4/128

17. Eiroa C., Rebollido I., Montesinos B., et al. (2016) Exocomet signatures around the A-shell star j Leonis? Astron. and Astrophys. 594. L1.
https://doi.org/10.1051/0004-6361/201629514

18. Ferlet R., Hobbs L. M., Madjar A. V. (1987) The beta Pictoris circumstellar disk. V. Time variations of the CA II-K line. Astron. and Astrophys. 185. 267—270.

19. Flynn G. J., Bleuet P., Borg J., et al. (2006) Elemental compositions of comet 81P/Wild 2 samples collected by stardust. Science. 314(5806). 1731.
https://doi.org/10.1126/science.1136141

20. Gangestad J. W., Henning G. A., Persinger R. y. R., Ricker G. R. (2013) A high Earth, Lunar resonant orbit for lower cost space science missions. arXiv e-prints. arXiv:1306.5333.

21. Greaves J. S., Holland W. S., Matthews B. C., et al. (2016) Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup. Mon. Notic. Roy. Astron. Soc. 461(4). 3910—3917.
https://doi.org/10.1093/mnras/stw1569

22. Haas M. R., Batalha N. M., Bryson S. T., et al. (2010) Kepler science operations. Astrophys. J. Lett. 713(2). L115—L119.
https://doi.org/10.1088/2041-8205/713/2/L115

23. Howell S. B., Sobeck C., Haas M., et al. (2014) The K2 mission: Characterization and early results. Publ. Astron. Soc. Pacif. 126(938). 398.
https://doi.org/10.1086/676406

24. Hsieh H. H., Denneau L., Wainscoat R. J., et al. (2015) The main-belt comets: The Pan-STARRS1 perspective. Icarus. 248. P. 289—312.
https://doi.org/10.1016/j.icarus.2014.10.031

25. Jenkins J. M. () Kepler data processing handbook: Overview of the science operations center. Kepler Science Document KSCI-19081-002 2017.

26. Jenkins J. M., Caldwell D. A., Chandrasekaran H., et al. (2010) Initial characteristics of Kepler long cadence data for detecting transiting planets. Astrophys. J. Lett. 713(2). P. L120—L125.
https://doi.org/10.1088/2041-8205/713/2/L120

27. Jewitt D., Hsieh H., Agarwal J. (2015) The active asteroids. 221—241.
https://doi.org/10.2458/azu_uapress_9780816532131-ch012

28. Jones G. H., Knight M. M., Battams K., et al. (2018) The science of Sungrazers, Sunskirters, and other Near-Sun Comets. Space Sci. Rev. 214 (1). 20.
https://doi.org/10.1007/s11214-017-0446-5

29. Kennedy G. M., Hope G., Hodgkin S. T., Wyatt M. C. (2019) An automated search for transiting exocomets. Mon. Notic. Roy. Astron. Soc. 482 (4). P. 5587—5596.
https://doi.org/10.1093/mnras/sty3049

30. Kiefer F., Lecavelier des Etangs A., Augereau J. C., et al. (2014) Exocomets in the circumstellar gas disk of HD 172555. Astron. and Astrophys. 561. L10.
https://doi.org/10.1051/0004-6361/201323128

31. Kiefer F., Lecavelier des Etangs A., Boissier J., et al. (2014) Two families of exocomets in the beta Pictoris system. Nature. 514(7523). P. 462—464.
https://doi.org/10.1038/nature13849

32. Kiefer F., Lecavelier des Etangs A., Vidal-Madjar A. (2014) Exocomets in the disk of two young A-type stars. SF2A-2014: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, eds.: J. Ballet, F. Martins, F. Bournaud, R. Monier, C. Reyle’. French Soc. of Astron. and Astrophys. 39—43.

33. Korsun P. P., Kulyk I. V., Ivanova O. V., et al. (2010) Dust tail of the active distant Comet C/2003 WT42 (LINEAR) studied with photometric and spectroscopic observations. Icarus. 210(2). P. 916—929.
https://doi.org/10.1016/j.icarus.2010.07.008

34. K\sp<l A., Mo\r A., Juh<sz A., et al. (2013) ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997. Astrophys. J. 776(2). 77.
https://doi.org/10.1088/0004-637X/776/2/77

35. Kral Q., MatrB L., Wyatt M. C., Kennedy G. M. (2017) Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. Mon. Notic. Roy. Astron. Soc. 469(1). P. 521—550.
https://doi.org/10.1093/mnras/stx730

36. Lagrange A. M., Meunier N., Rubini P., et al. (2019) Evidence for an additional planet in the b Pictoris system. Nature Astron. 3. P. 1135—1142.
https://doi.org/10.1038/s41550-019-0857-1

37. Lagrange-Henri A. M., Beust H., Ferlet R., Hobbs L. M., Madjar A. V. (1990) HR 10: a new beta Pictoris-like star? Astron. and Astrophys. 227. P. L13—L16.

38. Lagrange-Henri A. M., Vidal-Madjar A., Ferlet R. (1988) The beta Pictoris circumstellar disk. VI. Evidence for material falling on to the star. Astron. and Astrophys. 190. 275—282.

39. Lecavelier Des Etangs A., Vidal-Madjar A., Ferlet R. (1999) Photometric stellar variation due to extra-solar comets. Astron. and Astrophys. 343. P. 916—922.

40. Mamajek E. E., Bell C. P. M. (2014) On the age of the b Pictoris moving group. Mon. Notic. Roy. Astron. Soc. 445(3). P. 2169—2180.
https://doi.org/10.1093/mnras/stu1894

41. Marcy G. W., Butler R. P., Williams E., et al. (1997) The planet around 51 Pegasi. Astrophys. J. 481(2). P. 926—935.
https://doi.org/10.1086/304088

42. Marino S., MatrB L., Stark C., et al. (2016) Exocometary gas in the HD 181327 debris ring. Mon. Notic. Roy. Astron. Soc. 460(3). P. 2933—2944.
https://doi.org/10.1093/mnras/stw1216

43. Marino S., Wyatt M. C., Paniƒ O., et al. (2017) ALMA observations of the h Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 MÅ planets? Mon. Notic. Roy. Astron. Soc. 465(3). P. 2595—2615.
https://doi.org/10.1093/mnras/stw2867

44. MatrB L., MacGregor M. A., Kalas P., et al. (2017) Detection of exocometary CO within the 440 Myr old Fomalhaut belt: A similar CO+CO2 ice abundance in exocomets and Solar system comets. Astrophys. J. 842(1). 9.
https://doi.org/10.3847/1538-4357/aa71b4

45. Mayor M., Queloz D. (1995) A Jupiter-mass companion to a solar-type star. Nature. 378(6555). P. 355—359.
https://doi.org/10.1038/378355a0

46. Meech K. J., Svoren J. ()2004.  Using cometary activity to trace the physical and chemical evolution of cometary nuclei. 317.

47. Montgomery S. L., Welsh B. Y. (2012) Detection of variable gaseous absorption features in the debris disks around young A-type stars. Publ. Astron. Soc. Pacif. 124(920). P. 1042.
https://doi.org/10.1086/668293

48. Montgomery S. L., Welsh B. Y. (2017) Unusually high circumstellar absorption variability around the d Scuti / l Bootis star HD 183324. Mon. Notic. Roy. Astron. Soc. 468(1). P. L55—L58.
https://doi.org/10.1093/mnrasl/slx016

49. Mo\r A., Henning T., Juh<sz A., et al. (2015) Discovery of molecular gas around HD 131835 in an APEX molecular line survey of bright debris disks. Astrophys. J. 814(1). 42.
https://doi.org/10.1088/0004-637X/814/1/42

50. Mumma M. J., Charnley S. B. (2011) The chemical composition of comets — emerging taxonomies and Natal Heritage. Annu. Rev. Astron. and Astrophys. 49(1). P. 471—524.
https://doi.org/10.1146/annurev-astro-081309-130811

51. Rappaport S., Vanderburg A., Jacobs T., et al. (2018) Likely transiting exocomets detected by Kepler. Mon. Notic. Roy. Astron. Soc. 474(2). P. 1453—1468.
https://doi.org/10.1093/mnras/stx2735

52. Reach W. T., Kelley M. S., Vaubaillon J. (2013) Survey of cometary CO2, CO, and particulate emissions using the Spitzer Space Telescope. Icarus. 226(1). P. 777—797.
https://doi.org/10.1016/j.icarus.2013.06.011

53. Rebollido I., Eiroa C., Montesinos B., et al. (2018) The co-existence of hot and cold gas in debris discs. Astron. and Astrophys. 614. A3.
https://doi.org/10.1051/0004-6361/201732329

54. Ricker G. R., Winn J. N., Vanderspek R., et al. (2015) Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes, Instruments, and Syst. 1. 014003.
https://doi.org/10.1117/1.JATIS.1.1.014003

55. Rousselot P., Korsun P. P., Kulyk I. V., et al. (2014) Monitoring of the cometary activity of distant comet C/2006 S3 (LONEOS). Astron. and Astrophys. 571. A73.
https://doi.org/10.1051/0004-6361/201424223

56. Schneider J. () The extrasolar planets encyclopaedia. URL: http://exoplanet.eu/

57. Smith B. A., Terrile R. J. (1984) A Circumstellar Disk around beta Pictoris. Science. 226 (4681). 1421—1424.
https://doi.org/10.1126/science.226.4681.1421

58. Swade D., Fleming S., Jenkins J. M., et al. (2018) The TESS science data archive. Observatory Operations: Strategies, Processes, and Systems VII, eds.: A. B. Peck, R. L. Seaman, B. C. R. SPIE. Digital library. 1070415.
https://doi.org/10.1117/12.2312066

59. Vanderspek R., Doty J., Fausnaugh M., et al. (2018). TESS Instrument Handbook. Version 0.1. URL: https://archive.stsci.edu/missions/tess/doc/TESS_Instrument_ Handbook_v0.1.pdf

60. Welsh B. Y., Craig N., Crawford I. A., Price R. J. (1998) Beta Pic-like circumstellar disk gas surrounding HR 10 and HD 85905. Astron. and Astrophys. 338. 674—682.

61. Welsh B. Y., Montgomery S. (2013) Circumstellar gas-disk variability around A-type stars: The detection of exocomets? Publ. Astron. Soc. Pacif. 125(929). 759.
https://doi.org/10.1086/671757

62. Welsh B. Y., Montgomery S. L. (2015) The appearance and disappearance of exo­comet gas absorption. Adv. in Astron. 2015. 980323.
https://doi.org/10.1155/2015/980323

63. Welsh B. Y., Montgomery S. L. (2018) Further detections of exocomet absorbing gas around Southern hemisphere A-type stars with known debris discs. Mon. Notic. Roy. Astron. Soc. 474(2). 1515—1525.
https://doi.org/10.1093/mnras/stx2800

64. Zieba S., Zwintz K., Kenworthy M. A., Kennedy G. M. (2019) Transiting exocomets detected in broadband light by TESS in the beta Pictoris system. Astron. and Astrophys. 625. L13.
https://doi.org/10.1051/0004-6361/201935552

65. Zuckerman B., Song I. (2012) A 40 Myr old gaseous circumstellar disk at 49 Ceti: Massive CO-rich comet clouds at young A-type stars. Astrophys. J. 758(2). 77.
https://doi.org/10.1088/0004-637X/758/2/77