Magneto-ionospheric effects from geospace storm of March 21—23, 2017

Luo, Y, 1Chernogor, LF, Garmash, KP
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(4):53-92
https://doi.org/10.15407/kfnt2022.04.053
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

The region of space where geospace storms evolve is the Sun — interplanetary-medium — magnetosphere — ionosphere — atmosthere — Earth (internal spheres) (SIMMIAE) system. The study of physical effects of geospace storms is one of the most important scientific questions in space geophysics. The problem of interactions between the SIMMIAE components evolving in the course of geospace storms is an interdisciplinary problem, which requires employing the systems approach for its solution. The problem involves many factors, and the response of the components is determined by simultaneous (synergistic) impact of a few perturbation factors. It is important that the SIMMIAE system is an open, nonlinear, and nonstationary system where positive and negative direct and reverse coupling mechanisms are present. Because of the multi-faceted manifestations of geospace storms and the unique nature of each storm, the study of physical effects of geospace storms is a pressing science problem. In addition to a comprehensive study of physical effects of geospace storms, the detailed adequate modeling and forecasting play a crucial role in maintaining a habitable and sustainable environment for a technology-reliant society. The greater the technological advances, the more vulnerable the civilization infrastructure is to the effects of solar and geospace storms. The objective of this work is to present the results of analysis of magneto-ionospheric effects that accompanied the geospace storm of March 21—23, 2017. To observe the effects caused by the geospace storm of March 21—23, 2017 in the ionosphere and in the magnetic field, the following instruments were taking measurements. The digisonde and the Doppler radar for vertical incidence measurements, located at the V. N. Karazin Kharkiv National University Radiophysical Observatory (49°38`N, 36°20`E), as well as the fluxmeter magnetometer at the V. N. Karazin Kharkiv National University Magnetometer Observatory (49°38`N, 36°56`E). The Doppler radar taking measurements at vertical incidence usually operates at two fixed frequencies, 3.2 MHz and 4.2 MHz. The smaller frequency is an efficient means for studying dynamical processes in the E and F1 regions, and the second one in the F1 and F2 regions. The fluxmeter magnetometer monitors the variations in the H and D components. The analysis of the ionospheric processes has been based on the ionograms. The frequency dependences of the virtual heights, z`, are first used to calculate the altitude, z`, dependences of the electron density, N. Then, the universal time dependences N(t) are plotted for fixed altitudes in the 140...260-km altitude range. Next, the systems spectral analysis is employed to estimate the periods, T, and the absolute amplitudes, ΔNa , of the quasiperiodic variations in N(t), as well as their relative variations, ΔNa = ΔNa /N. The amplitudes of Doppler radar vertically reflected signals have also been employed in the analysis. Time gating of the reflected signals has made it possible to obtain the temporal dependences of the amplitude of the beat signal between the reference signal and the reflected signal, as well as the Doppler shift for certain altitude ranges. The data have made it possible to track the local time dynamics of the radio wave amplitudes and reflection heights in the course of the ionospheric storms. A detailed analysis of the Doppler spectra has also been undertaken. The UT dependences of the Doppler spectra in the (-2…+2)-Hz frequency range have been plotted applying the Fourier transform performed over 60-s intervals to the amplitudes of the beat signals. Then, the temporal dependences of the Doppler shift, fd(t), is formed for the main ray. Next, the fd(t) dependences undergo the systems spectral analysis over 120-min intervals. The output of the fluxmeter magnetometer acquired on a relative scale is converted into nanoteslas employing the magnetometer frequency response. Next, the temporal dependences of the H and D components are formed. Further, these dependences undergo the systems spectral analysis over 24-h intervals in the 1…1,000-s period, T, range. The main results of the study are as follows. The geospace storm, which power attained 18 GJ/s, was observed to occur on March 21—23, 2017. The storm is classified as weak, based on its intensity. The geospace storm was accompanied by a weak ionospheric perturbation in the daytime and by a strong ionospheric storm at night, while the electron density showed a factor of 1.3 and 4…5 times decrease, respectively. The geospace storm was also accompanied by two moderate magnetic storms, the energy of which were estimated to be ~1015 J and power of ~70 GW. During the magnetic storms, the level of fluctuations in the horizontal components enhanced in the 100…1,000-s period range from ±0.5 nT to ±5 nT, and the fluctuation spectra significantly changed.

Keywords: Doppler shift of frequency, geospace storm, ionosphere, ionospheric effect, magnetic storm, perturbation parameters, quasi-periodic perturbation, radio wave reflection level
References: 

1. Grigorenko Ye. I., Emelyanov L. Ya., Pazura S. A., Chernogor L. F. (2007). Ionospheric processes during the 7-10 November 2004 extreme geospace storm. 1. Observation results. Space Science and Technology. 13(4). 62-76 [in Russian].
https://doi.org/10.15407/knit2007.04.062

2. Grigorenko Ye. I., Pazura S. A., Chernogor L. F. (2007). Ionospheric processes during the 7-10 November 2004 extreme geospace storm. 2. Simulation results and discussion. Space Science and Technology. 13(4). 77-90 [in Russian].
https://doi.org/10.15407/knit2007.04.077

3. Grigorenko Y. I., Lysenko V. N., Taran V. I. Chernogor L. F. (2003). Radio studies of processes in the ionosphere associated with the strongest September 25, 1998 geomagnetic storm. Uspekhi sovremennoi radioelektroniki. 9. 57-94 [in Russian].

4. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. (2005). F. Specific features of the ionospheric storm of March 20-23, 2003. Geomagnetism and Aeronomy. 45(6). 745-757.

5. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 1. Space Science and Technology. 13(5). 58-76 [in Russian].
https://doi.org/10.15407/knit2007.05.058

6. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 2. Space Science and Technology. 13(5). 77-96 [in Russian].
https://doi.org/10.15407/knit2007.05.077

7. Grigorenko E. I., Lysenko V. N., Pazyura S. A., Taran V. I., Chernogor L. F. (2007). Ionospheric disturbances during the severe magnetic storm of November 7-10, 2004. Geomagnetism and Aeronomy. 47(6). 720-738.
https://doi.org/10.1134/S0016793207060059

8. Grigorenko E. I., Pazura S. A., Taran V. I., Chernyaev S. V., Chernogor L. F. (2005). Dynamic processes in the ionosphere during the severe magnetic storm of May 30-31, 2003. Geomagnetism and Aeronomy. 45(6). 758-777.

9. Danilov A. D. (2013). F2-region response to geomagnetic disturbances (review). Geliogeofiz. Issled. (5). 1-33 [in Russian].

10. Danilov A. D., Morozova L. D. (1985). Ionospheric storms in the F2 region. Morphology and physics (review). Geomagnetism and Aeronomy. 25(5). 705-721 [in Russian].

11. Emelyanov L. Ya., Katsko S. V., Chernogor L. F. (2019). Ionospheric effects of geospace storms on December 21-24, 2016 and March 21-23, 2017. Bulletin of the National Technical University "KhPI", Series: Radiophysics and ionosphere. (№ 25 (1350)). 78-85.

12. Panasenko S. V., Chernogor L. F. (2007). Event of the November 7-10, 2004, magnetic storm in the lower ionosphere. Geomagnetism and Aeronomy. 47(5). 608- 620.
https://doi.org/10.1134/S0016793207050106

13. Ptitsyna N. G., Danilova O. A., Tyasto M. I., Sdobnov V. E. (2021). Dynamics of cosmic-ray cutoff rigidity and magnetospheric parameters during different phases of the storm of November 20, 2003. Geomagnetism and Aeronomy. 61(2). 169-179.
https://doi.org/10.1134/S0016793221010114

14. Chernogor L. F. (2008). Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagnetism and Aeronomy, 48(5), 652-673.
https://doi.org/10.1134/S0016793208050101

15. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

16. Chernogor L. F., Garmash K. P., Guo Q., Zheng Y. (2021). Effects of the Strong Ionospheric Storm of August 26, 2018: Results of Multipath Radiophysical Monitoring. Geomagnetism and Aeronomy. 61(1). 73-91.
https://doi.org/10.1134/S001679322006002X

17. Chernogor L. F., Shevelev M. B. (2020). Latitudinal dependence of quasi-periodic variations in the geomagnetic field during the greatest geospace storm of September 7-9, 2017. Space Science and Technology. 26(2). 72-83.
https://doi.org/10.15407/knit2020.02.072

18. Chernogor L. F., Garmash K. P., Podnos V. A., Tyrnov O. F. (2013). The V. N. Karazin Kharkiv National University Radiophysical Observatory - the tool for ionosphere monitoring in space experiments. Space Project «Ionosat-Micro» (Eds. S. A. Zasukha, O. P. Fedorov). Kyiv: Akademperiodika Publ., 160-182 [in Russian].

19. Chernogor L. F. (2021). Physics of geospace storms. Space Science and Technology. 27(1(128)). 3-77.
https://doi.org/10.15407/knit2021.01.003

20. Chernogor L. F. (2021). Statistical characteristics of geomagnetic storms in the 24th cycle of solar activity. Kinematics and Physics of Celestial Bodies. 37(4). 49-59.
https://doi.org/10.3103/S0884591321040048

21. Chernogor L. F., Holub M. Yu., Luo Y. (2020). Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009-2020. Visnyk of V.N. Karazin Kharkiv National University, Series "Radio Physics and Electronics". 33. 69-77.

22. Yasyukevich Yu. V., Perevalova N. P., Edemskiy I. K., Poliakova A. S. (2013). The response of the ionosphere to solar and geophysical disturbing factors according to GPS, monograph. Irkutsk: ISU Publishing House, 259.

23. Blagoveshchensky D. V. (2020). Effects of geomagnetic storms in the low-latitude ionosphere. Cosmic Res. 58(4). 234-241.
https://doi.org/10.1134/S0010952520040024

24. Blagoveshchensky D. V., Sergeeva M. A. (2019). Impact of geomagnetic storm of September 7-8, 2017 on ionosphere and HF propagation: A multi-instrument study. Adv. Space Res. 63(1). 239-256.
https://doi.org/10.1016/j.asr.2018.07.016

25. Blagoveshchensky D. V., Zhbankov G. A., Maltseva O. A. (2019). Observed and calculated ionograms of oblique ionospheric sounding on HF radio paths during a magnetic storm of September 7-8, 2017. Radiophysics and Quantum Electronics. 61(12). 881-892.
https://doi.org/10.1007/s11141-019-09944-3

26. Bolaji O. S., Fashae J. B., Adebiyi S. J., Owolabi C., Adebesin B. O., Kaka R. O., Jewel Ibanga, Abass M., Akinola O. O., Adekoya B. J., Younas W. (2021). Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25-26, 2018 geomagnetic storm. J. Geophys. Res. 126(8). Paper no. e2020JA029068
https://doi.org/10.1029/2020JA029068

27. Bothmer V., Daglis I. (2007). Space Weather: Physics and Effects. Springer-Verlag New York. 438. ISBN 3-642-06289-X.
https://doi.org/10.1007/978-3-540-34578-7

28. Buonsanto M. J. (1999). Ionospheric Storms - A Review. Space Science Reviews. 88. 563-601.
https://doi.org/10.1023/A:1005107532631

29. Chernogor L. F., Grigorenko Ye. I., Lysenko V. N., Taran V. I. (2007). Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations. Int. J. Geomagn. Aeron. 7. GI3001.
https://doi.org/10.1029/2005GI000125

30. Chernogor L. F., Garmash K. P., Guo Q., Luo Y., Rozumenko V. T., Zheng Y. (2020). Ionospheric storm effects over the People's Republic of China on 14 May 2019: Results from multipath multi-frequency oblique radio sounding. Adv. Space Res. 66(2). 226-242.
https://doi.org/10.1016/j.asr.2020.03.037

31. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T. Zheng Y. (2021). Radio Wave Characteristics Distorted During Geospace Storm: Results of Multi-Frequency Multiple Path Oblique Sounding of Ionosphere. 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON). Lviv, Ukraine, August 26 - 28. 151-156.
https://doi.org/10.1109/UKRCON53503.2021.9576010

32. Chernogor L. F., Zheng Y., Guo Q., Luo Y., Garmash K. P., Rozumenko V. T. (2022). Features of Ionospheric and Magnetic Effects of August 5-6, 2019 Noticeable Geospace Storm Over China and Ukraine. Problems of Geocosmos - 2020. 2022. Chapter 28. Springer Nature Switzerland AG. P. 379-396.
https://doi.org/10.1007/978-3-030-91467-7_28

33. D'Angelo G., Piersanti M., Alfonsi L., Spogli L., Clausen L. B. N., Coco I., Li G., Baiqi N. (2018). The response of high latitude ionosphere to the 2015 St. Patrick's day storm from in situ and ground based observations. Adv. Space Res. 62(3). 638-650.
https://doi.org/10.1016/j.asr.2018.05.005

34. Danilov A. D., Laštovička J. (2001). Effects of geomagnetic storms on the ionosphere and atmosphere. Inter. J. Geomagn. Aeron. 2(3). 209-224.

35. Despirak I. V., Kleimenova N. G., Gromova L. I., Gromov S. V., Malysheva L. M. (2020). Supersubstorms during Storms of September 7-8, 2017. Geomagn. Aeron. 60(3). 292-300.
https://doi.org/10.1134/S0016793220030044

36. Dmitriev A. V., Suvorova A. V., Klimenko M. V., Klimenko V. V., Ratovsky K. G., Rakhmatulin R. A., Parkhomov V. A. (2017). Predictable and unpredictable ionospheric disturbances during St. Patrick's Day magnetic storms of 2013 and 2015 and on 8-9 March 2008. J. Geophys. Res. 122(2). 2398-2423.
https://doi.org/10.1002/2016JA023260

37. Fejer B. G., Navarro L. A., Sazykin S., Newheart A., Milla M. A., Condor P. (2021). Prompt penetration and substorm effects over Jicamarca during the September 2017 geomagnetic storm. J. Geophys. Res. 126(8). e2021JA029651.
https://doi.org/10.1029/2021JA029651

38. Feng J., Zhou Y., Zhou Y., Gao S., Zhou C., Tang Q., Liu Y. (2021). Ionospheric response to the 17 March and 22 June 2015 geomagnetic storms over Wuhan region using GNSS-based tomographic technique. Adv. Space Res. 67(1). 111-121.
https://doi.org/10.1016/j.asr.2020.10.008

39. Fuller-Rowell T. J., Codrescu M. V., Roble R. G., Richmond A. D. (1998). How does the thermosphere and ionosphere react to a geomagnetic storm? Magnetic storms. Geophysical monograph series. 98. American Geophysical Union, Washington, D.C. 203-226.
https://doi.org/10.1029/GM098p0203

40. Ghodpage R. N., Patil P. T., Gurav O. B., Gurubaran S., Sharma A. K. (2018). Ionospheric response to major storm of 17th March 2015 using multi-instrument data over low latitude station Kolhapur (16.8°N, 74.2°E, 10.6°dip. Lat.). Adv. Space Res. 62(3). 624-637.
https://doi.org/10.1016/j.asr.2018.05.003

41. Gonzalez W. D., Jozelyn J. A., Kamide Y., Kroehl H. W., Rostoker G., Tsurutani B. T., Vasyliunas V. M. (1994). What is a geomagnetic storm? J. Geophys. Res. 99(A4). 5771-5792.
https://doi.org/10.1029/93JA02867

42. Imtiaz N., Younas W., Khan M. (2020). Response of the low-to mid-latitude ionosphere to the geomagnetic storm of September 2017. Ann. Geophys. 38(2). 359-372.
https://doi.org/10.5194/angeo-38-359-2020

43. Jiang C., Yang G., Liu J., Yokoyama T., Liu T., Lan T., Zhou C., Zhang Y., Zhao Z., Komolmis T., Supnithi P., Yatini C. Y. (2017). Equatorial and low-latitude ionospheric response to the 17-18 March 2015 great storm over South East Asia longitude sector. J. Geophys. Res. 122(5). 5756-5767.
https://doi.org/10.1002/2017JA024134

44. Jimoh O., Lei J., Zhong J., Owolabi C., Luan X., Dou X. (2019). Topside Ionospheric Conditions During the 7-8 September 2017 Geomagnetic Storm. J. Geophys. Res. 124(11). 9381-9404.
https://doi.org/10.1029/2019JA026590

45. Jin S., Jin R., Kutoglu H. (2017). Positive and Negative Ionospheric Responses to the March 2015 Geomagnetic Storm from BDS Observations. J. Geodes. 91(6). 613-626.
https://doi.org/10.1007/s00190-016-0988-4

46. Jonah O. F., Coster A., Zhang S., Goncharenko L., Erickson P. J., de Paula E. R., Kherani E. A. (2018). TID Observations and Source Analysis During the 2017 Memorial Day Weekend Geomagnetic Storm Over North America. J. Geophys. Res. 123(10). 8749-8765.
https://doi.org/10.1029/2018JA025367

47. Katsko S. V., Emelyanov L. Y., Chernogor L. F. (2021). Ionosphere response to space weather events on 21-23 March 2017 in the central region of Europe. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). 01-04.
https://doi.org/10.23919/URSIGASS51995.2021.9560587

48. Kumar S., Kumar V. V. (2019). Ionospheric Response to the St. Patrick's Day Space Weather Events in March 2012, 2013, and 2015 at Southern Low and Middle Latitudes. J. Geophys. Res. 124(1). 584-602.
https://doi.org/10.1029/2018JA025674

49. Kumar V. V., Parkinson M. L. (2017). A Global Scale Picture of Ionospheric Peak Electron Density Changes during Geomagnetic Storms. Space Weather. 15(4). 637-652.
https://doi.org/10.1002/2016SW001573

50. Laštovička J. (1996). Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere. J. Atmos. Terr. Phys. 58(7). 831-843.
https://doi.org/10.1016/0021-9169(95)00106-9

51. Lei J., Huang F., Chen X., Zhong J., Ren D., Wang W., Yue X., Luan X., Jia M., Dou X., Hu L., Ning B., Owolabi C., Chen J., Li G., Xue X. (2018). Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017? J. Geophys. Res. 123(4). 3217-3232.
https://doi.org/10.1029/2017JA025166

52. Li S. (2021). Temporal evolution analysis of storm-enhanced density during an intense magnetic storm on March 2015. Adv. Space Res. 67(5). 1570-1579.
https://doi.org/10.1016/j.asr.2020.12.004

53. Lissa D., Srinivasu V.K.D., Prasad D.S.V.V.D., Niranjan K. (2020). Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80°E and 120°E longitudes in the Asian sector. Adv. Space Res. 66(6). P. 1427-1440.
https://doi.org/10.1016/j.asr.2020.05.025

54. Liu G., Shen H. (2017). A severe negative response of the ionosphere to the intense geomagnetic storm on March 17, 2015 observed at mid- and low-latitude stations in the China zone. Adv. Space Res. 59(9). 2301-2312.
https://doi.org/10.1016/j.asr.2017.02.021

55. Liu J., Zhang D.-H., Coster A. J., Zhang S.-R., Ma G.-Y., Hao Y.-Q., Xiao Z. (2019). A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm. Ann. Geophys. 37(4). 673-687.
https://doi.org/10.5194/angeo-37-673-2019

56. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Yu. (2021). Dynamic processes in the magnetic field and in the ionosphere during the 30 August 2 September, 2019 geospace storm. Ann. Geophys. 39(4).
https://doi.org/10.5194/angeo-39-657-2021

57. Luo Y., Guo Q., Zheng Y., Garmash K. P., Chernogor L. F., Shulga S. M. (2021). Geospace storm effects on August 5-6, 2019. Space Science and Technology. 27(2(129)). 45-69.
https://doi.org/10.15407/knit2021.02.045

58. Mannucci A. J., Tsurutani B. T., Iijima B. A., Komjathy A., Saito A., Gonzalez W. D., Guarnieri F. L., Kozyra J. U., Skoug R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Halloween storms". Geophys. Res. Lett. 32. L12S02.
https://doi.org/10.1029/2004GL021467

59. Mansilla G. A., Zossi M. M. (2020). Longitudinal variation of the ionospheric response to the 26 August 2018 geomagnetic storm at equatorial/low latitudes. Pure Appl. Geophys. 177(12). 5833-5844.
https://doi.org/10.1007/s00024-020-02601-1

60. Matsushita S. (1959). A study of the morphology of ionospheric storms. J. Geophys. Res. 64(4). 305-321.
https://doi.org/10.1029/JZ064i003p00305

61. Ngwira C. M., Habarulema J.-B., Astafyeva E., Yizengaw E., Jonah O. F., Crowley G., Gisler A., Coffey V. (2019). Dynamic Response of Ionospheric Plasma Density to the Geomagnetic Storm of 22-23 June 2015. J. Geophys. Res. 124(8). 7123-7139.
https://doi.org/10.1029/2018JA026172

62. Nykiel G., Zanimonskiy Y. M., Yampolski Yu. M., Figurski M. (2017). Efficient usage of dense GNSS networks in central Europe for the visualization and investigation of ionospheric TEC variations. Sensors. 17(10). 2298.
https://doi.org/10.3390/s17102298

63. Olwendo O. J., Cesaroni C., Yamazaki Y., Cilliers P. (2017). Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick's day storm. Adv. Space Res.. 60(8). 1817-1826.
https://doi.org/10.1016/j.asr.2017.06.037

64. Paul B., De B. K., Guha A. (2018). Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geodaetica et Geophysica. 53(4). 579-606.
https://doi.org/10.1007/s40328-018-0221-4

65. Piersanti M., Cesaroni C., Spogli L., Alberti T. (2017). Does TEC react to a sudden impulse as a whole? The 2015 Saint Patrick's day storm event. Adv. Space Res. 60(8). 1807-1816.
https://doi.org/10.1016/j.asr.2017.01.021

66. Polekh N., Zolotukhina N., Kurkin V., Zherebtsov G., Shi J., Wang G., Wang Z. (2017). Dynamics of ionospheric disturbances during the 17-19 March 2015 geomagnetic storm over East Asia. Adv. Space Res. 60(11). 2464-2476.
https://doi.org/10.1016/j.asr.2017.09.030

67. Prölss G. W. (1995). Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics. Edited by H. Volland. CRC Press, Roca Raton, Fla. 2. 195-248.

68. Prölss G. W. (1998). Magnetic storm associated perturbations of the upper atmosphere, In ed. Tsurutani B. T., Gonzalez W. D., Kamide Y., Arballo J. K. Magnetic storms. Geophysical monograph series. 98. American Geophysical Union, Washington, D.C. 249-290.

69. Prölss G. W., Jung M. J. (1978). Travelling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes. J. Atmos. Terr. Phys. 40(12). 1351-1354.
https://doi.org/10.1016/0021-9169(78)90088-0

70. Ray S., Roy B., Paul K. S., Goswami S., Oikonomou C., Haralambous H., Chandel B., Paul A. (2017). Study of the effect of 17-18 March 2015 geomagnetic storm on the Indian longitudes using GPS and C/NOFS. J. Geophys. Res. 122(2). 2551-2563.
https://doi.org/10.1002/2016JA023127

71. Rubtsov A. V., Maletckii B. M., Danilchuk E. I., Smotrova E. E., Shelkov A. D., Yasyukevich A. S. (2020). Ionospheric disturbances over eastern Siberia during April 12-15, 2016 geomagnetic storms. Sol.-Terr. Phys. 6(1). 60-68.
https://doi.org/10.12737/stp-61202007

72. Şentürk E. (2020). Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations. Astrophys. Space Sci. 365(7). 110.
https://doi.org/10.1007/s10509-020-03828-z

73. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Y., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J. (2018). The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain. J. Atmos. Solar-Terr. Phys. 180. 93-105.
https://doi.org/10.1016/j.jastp.2017.10.014

74. Shreedevi P. R., Choudhary R. K., Thampi Smitha V., Yadav Sneha, Pant T. K., Yu Yiqun, McGranaghan Ryan, Thomas Evan G., Bhardwaj Anil, Sinha A. K. (2020). Geomagnetic storm-induced plasma density enhancements in the southern polar ionospheric region: a comparative study using St. Patrick's day storms of 2013 and 2015. Space Weather. 18(8). e2019SW002383.
https://doi.org/10.1029/2019SW002383

75. Spogli L., Sabbagh D., Regi M., Cesaroni C., Perrone L., Alfonsi L., Mauro D. Di, Lepidi S., Campuzano S. A., Marchetti D., Santis A. De., Malagnini A., Scotto C., Cianchini G., Shen X., Piscini A., Ippolito A. (2021). Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and swarm satellites and by local ground-based observations. J. Geophys. Res. 126(2). e2020JA028368.
https://doi.org/10.1029/2020JA028368

76. Sun W.-J., Ning B.-Q., Zhao B.-Q., Li G.-Z., Hu L.-H., Chang S.-M. (2017). Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015. Acta Geophysica Sinica. 60(1). 1-10.

77. Uryadov V. P., Vybornov F. I., Pershin A. V. (2019). Features of the HF signal propagation on oblique sounding paths during solar and magnetic activity in September 2017. Radiophys. Quantum Electr. 62(2). 85-98.
https://doi.org/10.1007/s11141-019-09956-z

78. Venkatesh K., Tulasi Ram S., Fagundes P. R., Seemala G. K., Batista I. S. (2017). Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick's Day storm of 17 March 2015. J. Geophys. Res. 122(4). 4553-4570.
https://doi.org/10.1002/2017JA024009

79. Verkhoglyadova O. P., Komjathy A., Mannucci A. J., Mlynczak M. G., Hunt L. A., Paxton L. J. (2017). Revisiting ionosphere-thermosphere responses to solar wind driving in superstorms of November 2003 and 2004. J. Geophys. Res. 122(10). 10,824-10,850.
https://doi.org/10.1002/2017JA024542

80. Vijaya Lekshmi D., Balan N., Tulasi Ram S., Liu J. Y. (2011). Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res. 116(A11). A11328.
https://doi.org/10.1029/2011JA017042

81. Wang Z., Zou S., Liu L., Ren J., Aa E. (2021). Hemispheric asymmetries in the mid-latitude ionosphere during the September 7-8, 2017 storm: multi-instrument observations. J. Geophys. Res. 126(4). e2020JA028829.
https://doi.org/10.1029/2020JA028829

82. Wen D., Mei D. (2020). Ionospheric TEC disturbances over China during the strong geomagnetic storm in September 2017. Adv. Space Res. 65(11). 2529-2539.
https://doi.org/10.1016/j.asr.2020.03.002

83. Willis D. M., Stevens P. R., Crothers S. R. (1997). Statistics of the largest geomagnetic storms per solar cycle (1844 - 1993). Ann. Geophys. 15(6). 719-728.
https://doi.org/10.1007/s00585-997-0719-5

84. Xu Z., Hartinger M., Clauer C., Peek T., Behlke R. (2017). A comparison of the ground magnetic responses during the 2013 and 2015 St Patrick's Day geomagnetic storms. J. Geophys. Res. 122(4). 4023-4036.
https://doi.org/10.1002/2016JA023338

85. Younas W., Amory-Mazaudier C., Khan M., Fleury R. (2020). Ionospheric and Magnetic Signatures of a Space Weather Event on 25-29 August 2018: CME and HSSWs. J. Geophys. Res. 125(8). e2020JA027981.
https://doi.org/10.1029/2020JA027981

86. Zakharenkova I., Cherniak I., Krankowski A. (2019). Features of storm-induced ionospheric irregularities from ground-based and spaceborne gps observations during the 2015 St. Patrick's day storm. J. Geophys. Res. 124(12). 10728-10748.
https://doi.org/10.1029/2019JA026782

87. Zhang S.-R., Erickson P. J., Zhang Y., Wang W., Huang C., Coster A. J., Holt J. M., Foster J. F., Sulzer M., Kerr R. (2017). Observations of ion-neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick's Day storm. J. Geophys. Res. 122(1). 1314-1337.
https://doi.org/10.1002/2016JA023307

88. Zolotukhina N., Polekh N., Kurkin V., Rogov D., Romanova E., Chelpanov M. (2017). Ionospheric effects of St. Patrick's storm over Asian Russia: 17-19 March 2015. J. Geophys. Res. 122(2). 2484-2504.
https://doi.org/10.1002/2016JA023180