The galactic cosmic ray propagation in the heliosphere during solar activity minimum

Heading: 
Fedorov, YI
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(2):17-36
https://doi.org/10.15407/kfnt2024.02.017
Language: Ukrainian
Abstract: 

The energetic charged particle propagation in the heliospheric magnetic fields is considered on the base of cosmic ray transport equation. The transport equation solution is reached in the approximation of small anisotropy value of particle angular distribution. The galactic cosmic ray energetic distribution at the heliopause is used as a transport equation boundary condition. The cosmic ray energy spectrum in the local interstellar medium is supposed to be known due to the results of prominent space missions (Pioneer, Voyager, PAMELA, AMS-02 etc.). The density of cosmic ray streaming is calculated during periods of various solar magnetic polarities. It is shown that the galactic cosmic ray intensity is minimal near the helioequator during periods of positive magnetic polarity. Under negative interplanetary magnetic field polarity the cosmic ray intensity decreases if the heliolatitude increases.

Keywords: cosmic rays, heliospheric magnetic fields, transport equation
References: 

1. Dolginov A. Z., Toptygin I. N. (1966) Multiple scattering of particles in a magnetic field with random inhomogeneities. JETP. 51(6). 1771-1783. 2. Dorman L. I., Kats M. E., Fedorov Yu. I., Shakhov B. A. (1978) On the energy balance of cosmic rays during multiple scattering in a randomly inhomogeneous magnetic field. Letters to JETP. 27(6). 374. 3. Toptygin I. N. (1983) Cosmic rays in interplanetary magnetic fields. M. : Nauka. 304. 4. Shakhov B. A., Kolesnik Yu. L. (2006) Iteration method for solution of cosmic ray propagation theory boundary problems. Kinemat. Phys. Celest. Bodies. 22(2). 101-108. 5. Aslam O. P. M., Bisschoff D., Ngobeni M. D., Potgieter M. S., et al. (2021) Time and charge-sign dependence of the heliospheric modulation of cosmic rays. Astrophys. J. 909. 215. 13. https://doi.org/10.3847/1538-4357/abdd35 6. Bisschoff D., Potgieter M. S., Aslam O. P. M. (2019) New very local interstellar spectra for electrons, positrons, protons and light cosmic ray nuclei. Astrophys. J. 878. 59. 8. https://doi.org/10.3847/1538-4357/ab1e4a 7. Burger A. A., Moraal H., Webb G. M. (1985) Drift theory of charged particles in electric and magnetic fields. Astrophys. Space Sci. 116. 107. https://doi.org/10.1007/BF00649278 8. Caballero-Lopez R. A., Moraal H. (2004) Limitations of the force field equation to describe cosmic ray modulation. J. Geophys Res. 109, A01101. 7. https://doi.org/10.1029/2003JA010098 9. De Simone N., Felice V. D., Gieseler J., Boesio M., et al. (2011) Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA and Ulysses observations. Astrophys. Space Sci. Trans. 7. 425. https://doi.org/10.5194/astra-7-425-2011 10. Dorman L. I., Katz M. E. (1977) Cosmic ray kinetics in space. Space Sci. Rev. 20. 529. https://doi.org/10.1007/BF02186896 11. Dorman L. I., Katz M. E., Fedorov Yu. I., Shakhov B. A. (1983) Variation of cosmic ray energy in interplanetary space. Astrophys. Space Sci. 94. 43. https://doi.org/10.1007/BF00651760 12. Engelbrecht N. E., Effenberger F., Florinski V., Potgieter M. S., et al. (2022) Theory of cosmic ray transport in the heliosphere. Space Sci. Rev. 218(33). 69. https://doi.org/10.1007/s11214-022-00896-1 13. Fedorov Yu. I., Shakhov B. A., Kolesnyk Yu. L. (2022) Modulation of galactic cosmic ray intensity in the approximation of small anisotropy. Kinemat. Phys. Celest. Bodies. 32. 181. https://doi.org/10.3103/S0884591322040043 14. Fedorov Yu. I., Stehlik M. (2017) The modulation of galactic cosmic ray intensity in the outer heliosphere. Solar Phys. 293(119). 18. https://doi.org/10.1007/s11207-017-1141-0 15. Forman M. A., Jokopii J. R., Owens A. J. (1974) Cosmic-ray streaming perpendicular to the mean magnetic field. Astrophys. J. 192. 535. https://doi.org/10.1086/153087 16. Gieseler J., Heber B. (2016) Spatial gradients of GCR protons in the inner heliosphere derived from Ulysses COSPIN/KET and PAMELA measurements. Astron. and Astrophys. 589(A32). 6. https://doi.org/10.1051/0004-6361/201527972 17. Gieseler J., Heber B., Herbst K. (2017) An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to the Earth in a broad range of rigidities. Arxiv: 1710.10834 [physics, space phys.]. https://doi.org/10.1002/2017JA024763 18. Gleeson L. J. (1969) The equations describing the cosmic ray gas in the interplanetary region. Planet Space Sci. 17(1). P. 31. https://doi.org/10.1016/0032-0633(69)90121-4 19. Gleeson L. J., Axford W. I. (1967) Cosmic rays in the interplanetary medium. Astrophys. J. 149. L115. https://doi.org/10.1086/180070 20. Gleeson L. J., Axford W. I. (1968) Solar modulation of galactic cosmic rays. Astrophys. J. 159. 1011. https://doi.org/10.1086/149822 21. Gleeson L. J., Webb G. M. (1978) Energy changes of cosmic rays in the interplanetary region. Astrophys. Space Sci. 58. 21. https://doi.org/10.1007/BF00645373 22. Hasselmann K., Wibberenz G. (1968) Scattering of charged particles by random electromagnetic fields. Z. Geophys. 34. № 2. 353. 23. Heber B. (2013) Cosmic rays through the Solar Hale Cycle. Insights from Ulysses. Space Sci. Rev. 176. 265. https://doi.org/10.1007/s11214-011-9784-x 24. Heber B., Droege W., Ferrando P., et al. (1996) Spatial variation of > 40 MeV/n nuclei fluxes observed during Ulysses rapid latitude scan. Astron. and Astrophys. 316. 538. 25. Heber B., Gieseler J., Dunzlaff P., Gome-Herrero R., et al. (2008) Latitudinal gradients of galactic cosmic rays during the 2007 solar minimum. Astrophys. J. 689. 1443. https://doi.org/10.1086/592596 26. Heber B., Potgieter M. S. (2006) Cosmic rays at high heliolatitudes. Space Sci. Rev. 127. 117. https://doi.org/10.1007/s11214-006-9085-y 27. Isenberg P. A., Jokipii J. R. (1979) Gradient and curvature drifts in magnetic fields with arbitrary spatial variations. Astrophys. J. 234. 746. https://doi.org/10.1086/157551 28. Jokipii J. R., Levy E. H., Hubbard W. B. (1977) Effects of particle drift on cosmic-ray transport. 1. General properties, applications to solar modulation. Astrophys. J. 213. 861. https://doi.org/10.1086/155218 29. Jokipii J. R., Thomas B. (1981) Effects of drift on the transport of cosmic rays. 4. Modulation by a wavy interplanetary current sheet. Astrophys. J. 249. 1115. https://doi.org/10.1086/158675 30. Kolesnyk Yu. L., Bobik P., Shakhov B. A., Putis M. (2017) An analytically iterative method for solving problems of cosmic ray modulation. Mon. Not. Roy. Astron. Soc. 470. 1073. https://doi.org/10.1093/mnras/stx1202 31. Kota J., Jokipii J. R. (1983) Efects of drift on the transport of cosmic rays. 6. A three-dimensional model including diffusion. Astrophys. J. 265. 573. https://doi.org/10.1086/160701 32. McKibben R. B., Connel J. J., Lopate C., Simpson J. A., Zhang M. (1996) Observations of galactic cosmic rays and the anomalous helium during Ulysses passage from the south to the north solar pole. Astron. and Astrophys. 316. 547. 33. McKibben R. B. (1998) Three-dimensional solar-modulation of cosmic rays and anomalous components in the inner heliosphere. Space Sci. Rev. 83. 21. https://doi.org/10.1007/978-94-017-1189-0_3 34. Ndiitwani D. C., Aslam O. P. M., Ngobeni M. D., Potgieter M. S., et al. (2023) The 3D numerical modeling on the temporal modulation of galactic protons as per PAMELA and AMS02 observation with changing solar activity. Proc. 37th Intern. Cosmic Ray Conf., 2023, Nagoya, Japan, PoS (ICRC23), 1318. https://doi.org/10.22323/1.444.1318 35. Ngobeni M. D., Aslam O. P. M., Potgieter M. S., Ramokgaba I. I., et al. (2023) Modeling the modulation of galactic protons in two successive very quiet solar minima. Proc. 37th Intern. Cosmic Ray Conf., 2023, Nagoya, Japan, PoS (ICRC23), 1236. https://doi.org/10.22323/1.444.1236 36. Parker E. N. (1958) Dynamics of the interplanetary gas and magnetic field. Astrophys. J. 128. P. 644. https://doi.org/10.1086/146579 37. Parker E. N. (1965) The passage of energetic charged particles through interplanetary space. Planet Space Sci. 13. 9. https://doi.org/10.1016/0032-0633(65)90131-5 38. Parker E. N. (2001) A history of early work on the heliospheric magnetic field. J. Geophys Res. 106(A8). 15797. https://doi.org/10.1029/2000JA000100 39. Potgieter M. S. (2013) Solar modulation of cosmic rays. Living Rev. Solar Phys. 10. 3. https://doi.org/10.12942/lrsp-2013-3 40. Shen Z., Qin G., Zuo P., Wei F., Ku X. (2021) Numerical modeling of latitudinal gradients for galactic cosmic-ray protons during solar minima: Comparing with Ulysses observations. Astrophys. J., Suppl. Ser. 256(18). 19. https://doi.org/10.3847/1538-4365/ac0a78 41. Urch I. H., Gleeson L. J. (1972) Galactic cosmic ray modulation from 1965-1970. Astrophys. Space Sci. 17. 426. https://doi.org/10.1007/BF00642912 42. Vos E. E., Potgieter M. S. (2015) New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J. 815. 119. 8. https://doi.org/10.1088/0004-637X/815/2/119 43. Vos E. E., Potgieter M. S. (2016) Global gradients for cosmic ray protons in the heliosphere during the solar minimum of cycle 23/24. Arxiv: 1608.01688 [physics, space phys.]. https://doi.org/10.1007/s11207-016-0945-7