The characteristic properties of solar activity in solar cycle 24
Kaplan, K |
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(2):77-91 |
https://doi.org/10.15407/kfnt2024.02.077 |
Language: Ukrainian |
Abstract: Solar cycle 24 began in December 2008 and ended in December 2019. Maximum of solar cycle 24 occurred in April 2014. Magnetic field intensity has been reported via data from the Wilcox Solar Observatory. Sunspot numbers are reported via the data from WDC-SILSO, Royal Observatory of Belgium. Sunspot area distribution was determined using the data from the Max Planck Institute. Flare Index intensity is indicated, and the data recorded by the Kandilli Observatory at Bogazici University is presented. Hemisphere asymmetries in terms of sunspots and solar flare index are calculated. The number of solar flares that occur at the highest intensity (X-class) during this cycle are presented, the data for which from the NOAA/SWPC. The characteristics of Coronal Mass Ejections are given, as determined using the LASCO coronagraph operating on the SOHO mission. Solar radio flux distribution and comparison with previous cycles was studied using data from Space Weather Canada. |
Keywords: coronal mass ejection, solar cycle, solar flares, solar radio flux, sunspots |
1. AtaH T., zg A. (1996) North-south asymmetry in the solar flare index. Solar Phys. 166, 201-208. https://doi.org/10.1007/BF00179363 2. Durn J. C., Lagg A., Solanki S. K., Van Noort M. (2020). Detection of the strongest magnetic field in a sunspot light bridge. Astrophys. J. 895(2), 129. https://doi.org/10.3847/1538-4357/ab83f1 3. Feynman J., Armstrong T. P., Dao-Gibner L., Silverman S. (1990) Solar proton events during solar cycles 19, 20, and 21. Solar Phys. 126, 385-401. https://doi.org/10.1007/BF00153058 4. Gopalswamy N., Yashiro S., Michalek G., Xie H., Mkel P., Vourlidas A., Howard R. A. (2010) A catalog of halo coronal mass ejections from SOHO. Sun and Geosph. 5, 7-16. 5. Hathaway D. H., Upton L. A. (2016) Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. Sp. Phys. 121, 10-744. https://doi.org/10.1002/2016JA023190 6. Kleczek J. (1952) Solar Flare Index. Publ. Centr. Inst. Astron. 22. 7. Kosovichev A. G. (2014) Sunquakes: helioseismic response to solar flares. arXiv Prepr. arXiv1402.1249. https://doi.org/10.1017/CBO9781107300668.025 8. Lee K., Moon Y.-J., Lee J.-Y., Lee K.-S., Na H. (2012) Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes. Solar Phys. 281, 639-650. https://doi.org/10.1007/s11207-012-0091-9 9. Li K. J., Gu X. M. (2000) Does the southern dominance of solar activity really exist in solar cycle 21? Astron. and Astrophys. 353, 396-398. 10. Lozitsky V. G. (2017). Spectral manifestations of extremely strong magnetic fields in the sunspot umbra. Advances in Space Res. 59(5), 1416-1424. https://doi.org/10.1016/j.asr.2016.11.034 11. Mandal S., Krivova N. A., Solanki S. K., Sinha N., Banerjee D. (2020) Sunspot area catalog revisited: Daily cross-calibrated areas since 1874. Astron. and Astrophys.640, A78. https://doi.org/10.1051/0004-6361/202037547 12. Panos B., Kleint L., Voloshynovskiy S. (2021) Exploring Mutual Information between IRIS Spectral Lines. I. Correlations between Spectral Lines during Solar Flares and within the Quiet Sun. Astrophys. J. 912, 121. https://doi.org/10.3847/1538-4357/abf11b 13. Pesnell W. D., Thompson B. J., Chamberlin P. C. (2011) The solar dynamics observatory (SDO). in The solar dynamics observatory 3-15 (Springer). https://doi.org/10.1007/978-1-4614-3673-7_2 14. Schrijver C. J., Beer J., Baltensperger U., Cliver E. W., Gdel M., Hudson H. S., McCrac¬ken K. G., Osten R. A., Peter T., Soderblom D. R., Usoskin I. G., Wolff E. W. (2012) Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res. Sp. Phys. 117(A8), A08103, 14. https://doi.org/10.1029/2012JA017706 15. Scolini C., Messerotti M., Poedts S., Rodriguez L. (2018) Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness. J. Sp. Weather Sp. Clim. 8, A09. https://doi.org/10.1051/swsc/2017046 16. Solomon S. C., Qian L., Burns A. G. (2013) The anomalous ionosphere between solar cycles 23 and 24. J. Geophys. Res. Sp. Phys.118, 6524-6535. https://doi.org/10.1002/jgra.50561 17. Sun X., Bobra M. G., Hoeksema J. T., Liu Y., Li Y., Shen C., Couvidat S., Norton A. A., Fisher G. H. (2015) Why is the great solar active region 12192 flare-rich but CME-poor? Astrophys. J. Lett. 804, L28, 6 p. https://doi.org/10.1088/2041-8205/804/2/L28 18. Usoskin I. G., Solanki S. K., Schssler M., Mursula K., Alanko K. (2003). Millennium-scale sunspot number reconstruction: Evidence for an unusually active Sun since the 1940s. Phys. Rev. Lett. 91(21), 211101. https://doi.org/10.1103/PhysRevLett.91.211101 19. Van Noort M., Lagg A., Tiwari S. K., Solanki S. K. (2013). Peripheral downflows in sunspot penumbrae. Astron. and Astrophys. 557, A24. https://doi.org/10.1051/0004-6361/201321073 20. Yakovkin I. I., Lozitsky V. G. (2022). Signatures of superstrong magnetic fields in a limb solar flare from observations of the Ha line. Advances in Space Res. 69(12), 4408-4418. https://doi.org/10.1016/j.asr.2022.04.012 21. Yakovkin I. I., Veronig A. M., Lozitsky V. G. (2021). Magnetic field measurements in a limb solar flare by hydrogen, helium and ionized calcium lines. Advances in Space Res. 68(3), 1507-1518. https://doi.org/10.1016/j.asr.2021.03.036