An analysis of optical and infrared spectra of the peculiar carbon-rich giant TU Gem

1Polinovsky, GO, 1Yakovina, LA, 1Pavlenko, YV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(4):38-57
Start Page: Physics of Stars and Interstellar Medium
Language: Russian
Abstract: 

TU Gem has been known as a peculiar carbon giant of galactic halo, but its belonging to the type of CH stars is still debated. We estimated the TU Gem atmospheric parameters through the simulation of the star’s spectrum and comparison of the simulation result with observations for two broad spectral ranges, namely, λ=400—720 nm and λ= 900 — 2440 nm. For the analysis we used the low-dispersion optical spectrum of TU Gem by Barnbaum et al. (1996) (R ~ 600) and the infrared spectrum by Tanaka et al. (2007) (R ~ 2600). The atmospheric models were calculated by the program SAM12 (Pavlenko, 2003). Because of the estimate ambiguity for metallicity ([Fe/H]) from our spectral data, only effective temperature of TU Gem, which weakly depends on the metallicity, is determined with confidence, namely, Tef = 3000 ± 100 K. The values of C/O, [C/Fe] and [N/Fe] were estimated for the ranges of –2.0 ≤ [Fe/H] ≤ 0.0 with the step Δ[Fe/H] = 0.5. Our evaluation [C/Fe] =0.63—0.67 at the value [Fe/H] = –1 is higher than the estimate [C/Fe] =0.21 at [Fe/H] = –1.1 by Kipper et al. (1996), and the abundance evaluations [N/Fe] =+1.0 at called metallicities coincide. This brings TU Gem closer to CH stars, but for more accurate conclusions a detailed analysis of the chemical composition of the TU Gem atmosphere is required.

Keywords: atmosphere, CH stars, TU Gem
References: 

1.E. A. Gurtovenko and R. I. Kostyk, “The system of solar oscillator strengths,” Preprint MAO-98-3E (Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, 1998).

2.T. A. Kipper and M. A. Kipper, “Chemical composition of the carbon halo star V Ari,” Pis’ma Astron. Zh. 16, 1113–1117 (1990).

3.L. S. Lyubimkov, The Chemical Composition of Stars: Analysis Method and Results (NPF Astroprint, Odessa, 1995) [in Russian].

4.I. Eglitis, “Spectrophotometric studies of carbon stars,” Nauchn. Inf. 67, 54–62 (1989).

5.C. Barnbaum, “A high-resolution spectral atlas of carbon stars,” Astrophys. J., Suppl. Ser. 90, 317–432 (1994).
https://doi.org/10.1086/191865

6.C. Barnbaum and K. H. Hinkle, “Infrared and optical velocities of carbon stars,” Astron. J. 110, 805–822 (1995).
https://doi.org/10.1086/117566

7.C. Barnbaum, R. P. S. Stone, and P. C. Keenan, “A moderate-resolution spectral atlas of carbon stars: R, J, N, CH, and barium stars,” Astrophys. J., Suppl. Ser. 105, 419–473 (1996). http://archive.is/tFI87
https://doi.org/10.1086/192323

8.J. H. Baumert, “Eight-color photometry of carbon stars,” PhD Thesis (Ohio State Univ., Columbus, 1972).

9.J. Bergeat and L. Chevallier, “The mass loss of C-rich giants,” Astron. Astrophys. 429, 235–246 (2005).
https://doi.org/10.1051/0004-6361:20041280

10.J. Bergeat, A. Knapic, and B. Rutily, “The effective temperatures of carbon-rich stars,” Astron. Astrophys. 369, 178–209 (2001).
https://doi.org/10.1051/0004-6361:20010106

11.P. F. Bernath, J. H. Black, and J. W. Brault, “The spectrum of magnesium hydride,” Astrophys. J. 298, 375–381 (1985).
https://doi.org/10.1086/163620

12.J. A. Cardelli, G. C. Clayton, and J. S. Mathis, “The relationship between infrared, optical, and ultraviolet extinction,” Astrophys. J. 345, 245–256 (1989).
https://doi.org/10.1086/167900

13.S. A. Clough, M. W. Shephard, E. J. Mlawer, et al., “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transfer 91, 233–244 (2005).
https://doi.org/10.1016/j.jqsrt.2004.05.058

14.C. Fabricius, E. Hog, V. V. Makarov, et al., “The Tycho double star catalogue,” Astron. Astrophys. 384, 180–189 (2002).
https://doi.org/10.1051/0004-6361:20011822

15.D. Goorvitch, “Infrared CO line list for the X 1Σ+ state,” Astrophys. J., Suppl. Ser. 95, 535–552 (1994).
https://doi.org/10.1086/192110

16.C. E. Gow, “Spectrophotometry of cool carbon stars,” Publ. Astron. Soc. Pac. 89, 510–518 (1977).
https://doi.org/10.1086/130153

17.D. F. Gray, The Observation and Analysis of Stellar Photospheres (Cambrige Univ. Press, New York, 2005).

18.U. G. Jorgensen and M. Larsson, “Molecular opacities of astrophysical interest: the A 2Π-X 2Σ+ system of CN,” Astron. Astrophys. 238, 424–434 (1990).

19.T. Kipper, “Chemical composition of a halo carbon star TT CVn,” Balt. Astron. 1, 181–189 (1992).

20.T. Kipper and U. G. Jorgensen, “Chemical composition of the metal-poor carbon star HD 187216,” Astron. Astrophys. 290, 148–158 (1994).

21.T. Kipper, U. G. Jorgensen, V. G. Klochkova, and V. E. Panchuk, “Chemical composition of metal-poor carbon stars in the halo,” Astron. Astrophys. 306, 489–500 (1996).

22.F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., “VALD-2: progress of the Vienna Atomic Line Data Base,” Astron. Astrophys., Suppl. Ser. 138, 119–133 (1999).
https://doi.org/10.1051/aas:1999267

23.R. L. Kurucz, CD-ROMs nos. 1–23. http://kurucz.harvard.edu/cdroms.html

24.D. L. Lambert, B. Gustafsson, K. Eriksson, and K. H. Hinkle, “The chemical composition of carbon stars. I. Carbon, nitrogen, and oxygen in 30 cool carbon stars in the Galactic disk,” Astrophys. J., Suppl. Ser. 62, 373–425 (1986).
https://doi.org/10.1086/191145

25.D. L. Lambert, “Stellar photospheres and molecules — A view from the bridge,” Lect. Notes Phys. 428, 1–28 (1994).
https://doi.org/10.1007/3-540-57747-5_32

26.J. J. Nassau and V. M. Blanco, “Carbon stars in two northern Milky Way zones,” Astrophys. J. 125, 195–209 (1957).
https://doi.org/10.1086/146293

27.K. Ohnaka and T. Tsuji, “Quantitative analysis of carbon isotopic ratios in carbon stars. I. 62 N-type and 15 Sctype carbon stars,” Astron. Astrophys. 310, 933–951 (1996).

28.H. Olofsson, K. Eriksson, B. Gustafsson, and U. Carlstrom, “A study of circumstellar envelopes around bright carbon stars. I. Structure, kinematics and mass-loss rate,” Astrophys. J., Suppl. Ser. 87, 267–304 (1993).
https://doi.org/10.1086/191804

29.Ya. V. Pavlenko, “Model atmospheres of red giants,” Astron. Rep. 47, 59–67 (2003).
https://doi.org/10.1134/1.1538496

30.Ya. V. Pavlenko and L. A. Yakovina, “Model atmospheres of carbon giants with high carbon abundance,” Kinematics Phys. Celestial Bodies 25, 302–308 (2009).
https://doi.org/10.3103/S0884591309060026

31.Ya. V. Pavlenko and H. R. A. Jones, “Carbon monoxide bands in M dwarfs,” Astron. Astrophys. 396, 967–975 (2002).
https://doi.org/10.1051/0004-6361:20021454

32.B. F. Peery, Jr., “Distances and luminosities of irregular variables of type N,” Astrophys. J. 199, 135–144 (1975).
https://doi.org/10.1086/153673

33.F. Querci, M. Querci, and V. G. Kunde, “Opacity probability distribution functions for electronic systems of CN and C2 molecules including their stellar isotopic forms,” Astron. Astrophys. 15, 256–274 (1971).

34.F. Querci, M. Querci, and T. Tsuji, “Model atmospheres for C type stars,” Astron. Astrophys. 31, 265–282 (1974).

35.A. Richichi and T. Chandrasekhar, “Near-infrared observations of the carbon stars TU Geminorum and SS Virginis at milliarcsecond resolution,” Astron. Astrophys. 451, 1041–1044 (2006).
https://doi.org/10.1051/0004-6361:20054669

36.E. F. Schlafly and D. P. Finkbeiner, “Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD,” Astrophys. J. 737, 103 (2011).
https://doi.org/10.1088/0004-637X/737/2/103

37.D. J. Schlegel, D. P. Finkbeiner, and M. Davis, “Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds,” Astrophys. J. 500, 525–553 (1998).
https://doi.org/10.1086/305772

38.V. I. Shenavrin, O. G. Taranova, and A. E. Nadzhip, “Search for and study of hot circumstellar dust envelopes,” Astron. Rep. 55, 31–81 (2011).
https://doi.org/10.1134/S1063772911010070

39.G. H. Smith, “The chemical inhomogenerity of globular clusters,” Publ. Astron. Soc. Pac. 99, 67–90 (1987).
https://doi.org/10.1086/131958

40.M. Tanaka, A. Letip, Y. Nishimaki, et al., “Near-infrared spectra of 29 carbon stars: simple estimates of effective temperature,” Publ. Astron. Soc. Jpn. 59, 939–953 (2007).

41.T. Tsuji, “Molecular abundances in stellar atmospheres. II,” Astron. Astrophys. 23, 411–431 (1973).

42.T. Tsuji, “Intrinsic properties of carbon stars. I. Effective temperature scale of N-type carbon stars,” J. Astrophys. Astron. 2, 95–113 (1981).
https://doi.org/10.1007/BF02714246

43.A. Ulla, P. Thejll, T. Kipper, and U. G. Jorgensen, “Infrared observations of peculiar carbon stars,” Astron. Astrophys. 319, 244–249 (1997).

44.R. S. Urdahl, Y. Bao, and W. M. Jackson, “An experimental determination of the heat of formation of C2 and the C-H bond dissociation energy in C2H,” Chem. Phys. Lett. 178, 425–428 (1991).
https://doi.org/10.1016/0009-2614(91)90276-F

45.A. D. Vanture, “The CH stars. II. Carbon, nitrogen and oxygen abundances,” Astron. J. 104, 1986–1996 (1992).
https://doi.org/10.1086/116374

46.A. D. Vanture, “The CH stars. III. Heavy element abundances,” Astron. J. 104, 1997–2004 (1992).
https://doi.org/10.1086/116375

47.Y. Yamashita, “A study of carbon star spectra based on the C-classification,” Publ. Dom. Astrophys. Obs. 13, 67–101 (1967).

48.M. Yuasa and W. Unno, “Distance determination of mass-losing stars,” Publ. Astron. Soc. Jpn. 51, 197–209 (1999).