Some peculiarities of VLF wave propagation in the inner magnetosphere of the Earth

Heading: 
1Mendzhul, DI, 2Agapitov, OV, 1Cheremnykh, OK
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(3):3-20
Start Page: Space Physics
Language: Ukrainian
Abstract: 

The non-ducted propagation characteristics of VLF waves in the inner magnetosphere are studied with respect to their frequency, source localization, and initial angle between the wave-normal and background magnetic field. The ray tracing software based on multi-component cold plasma approach is developed with the use of the IGRF magnetic field model and diffusion model of plasma density. We describe the dynamics of the wave-normal direction during propagation and magnetospheric reflection. It is shown that whistler waves can be reflected when lower hybrid resonance frequency becomes greater than the wave frequency ( ωLHF > ω). This corresponds to the magnetic latitude near λ≈ 50°. The simulation results confirm the inapplicability of the quasi-longitudinal approximation to describe the magnetospheric whistler propagation. We present some simulation results of chorus emissions propagation on the basis of realistic wave distributions on the initial parameters. Particularly, distributions of chorus emission waves in accordance with the wave-normal directions are obtained for different magnetic latitudes. These distributions are required for studying diffusive processes in the radiation belts. Our results are in good agreement with the CLUSTER STAFF-SA measurements.

Keywords: Earth, inner magnetosphere, VLF waves
References: 

1.O. Agapitov, V. Krasnoselskikh, T. Dudok De Wit, et al., “Multispacecraft observations of chorus emissions as a tool for the plasma density fluctuations’ remote sensing,” J. Geophys. Res., 116, A09222 (2011). doi 10.1029/2011JA016540.
https://doi.org/10.1029/2011JA016540

2.O. Agapitov, V. Krasnoselskikh, Y. V. Khotyaintsev, and G. Rolland, “A statistical study of the propagation characteristics of whistler waves observed by cluster,” Geophys. Res. Lett. 38, L20103 (2011). doi 10.1029/2011GL049597.
https://doi.org/10.1029/2011GL049597

3.O. Agapitov, V. Krasnoselskikh, Yu. Zaliznyak, et al., “Chorus source region localization in the Earth’s outer magnetosphere using THEMIS measurements,” Ann. Geophys. 28, 1733–1386 (2010). doi 10.5194/angeo-28-1377-2010.
https://doi.org/10.5194/angeo-28-1377-2010

4.O. Agapitov, V. Krasnoselskikh, Yu. Zaliznyak, et al., “Observations and modeling of forward and reflected chorus waves captured by THEMIS,” Ann. Geophys. 29, 541–550 (2011). doi 10.5194/angeo-29-541-2011.5.
https://doi.org/10.5194/angeo-29-541-2011

5.J. J. Angerami and J. O. Thomas, “Studies of planetary atmospheres 1. The distribution of electrons and ions in the Earth’s exosphere,” J. Geophys. Res. 69(21), 4537–4560 (1964). doi 10.1029/JZ069i021p04537.
https://doi.org/10.1029/JZ069i021p04537

6.A. Artemyev, O. Agapitov, H. Breuillard, et al., “Electron pitch-angle diffusion in radiation belts: The effects of whistler wave oblique propagation,” Geophys. Res. Lett. 39, L08105 (2012). doi 10.1029/2012HL051393.
https://doi.org/10.1029/2012GL051393

7.J. Bortnik, R. M. Thorne, N. P. Meredith, and O. Santolik, “Ray tracing of penetrating chorus and its implications for the radiation belts,” Geophys. Res. Lett. 34, L15109 (2007). doi 10.1029/2007GL030040.
https://doi.org/10.1029/2007GL030040

8.W. J. Burtis and R. A. Helliwell, “Magnetospheric chorus: occurrence patterns and normalized frequency,” J. Geophys. Res. 24, 1007–1024 (1976).

9.R. K. Burton and R. E. Holzer, “The origin and propagation of chorus in the outer magnetosphere,” J. Geophys. Res. 79, 1014–1023 (1974).
https://doi.org/10.1029/JA079i007p01014

10.J. Chum and O. Santolik, “Propagation of whistler-mode chorus to low altitudes: divergent ray trajectories and ground accessibility,” Ann. Geophys. 23, 3727–3738 (2005).
https://doi.org/10.5194/angeo-23-3727-2005

11.D. L. Gallagher, P. D. Craven, and R. H. Comfort, “Global core plasma model,” J. Geophys. Res. 105, 18119–18834 (2000). doi 10.1029/1999JA000241.
https://doi.org/10.1029/1999JA000241

12.R. Gendrin, “Le guidage des whistlers par le champ magnetique,” Planet. Space Sci. 5, 274 (1961). doi 10.1016/0032-0633(61)90096-4.
https://doi.org/10.1016/0032-0633(61)90096-4

13.V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon Press, New York, 1970).

14.R. A. Helliwell, “A theory of discrete emissions from the magnetosphere,” J. Geophys. Res. 72, 4773–4790 (1967).
https://doi.org/10.1029/JZ072i019p04773

15.R. B. Horne and R. M. Thorne, “Relativistic electron acceleration and precipitation during resonant interactions with whistler mode chorus,” Geophys. Res. Lett. 30(10), 1527 (2003).
https://doi.org/10.1029/2003GL016973

16.C. F. Kennel and H. E. Petschek, “Limit on stably trapped particle fluxes,” J. Geophys. Res. 71(1), 1–28 (1966). doi 10.1029/JZ07i001p00001.
https://doi.org/10.1029/JZ071i001p00001

17.M. J. LeDocq, D. A. Gurnett, and G. B. Hospodarsky, “Chorus source locations from VLF Poynting flux measurements with the polar spacecraft,” Geophys. Res. Lett. 25(21), 4063–4066 (1998). doi 10.1019/1998GL900071.
https://doi.org/10.1029/1998GL900071

18.W. Li, R. M. Thorne, V. Angelopoulos, et al., “Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft,” Geophys. Res. Lett. 36, L09104 (2009). doi 10.1029/2009GL037595.
https://doi.org/10.1029/2009GL037595

19.L. R. Lyons, “General relations for resonant particle diffusion in pitch angle and energy,” J. Plas. Phys. 12, 45–49 (1974). doi 10.1017/S0022377800024910.
https://doi.org/10.1017/S0022377800024910

20.N. P. Meredith, R. B. Horne, and R. R. Anderson, “Substrom dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies,” J. Geophys. Res. 106, 178 (2001).
https://doi.org/10.1029/2000JA900156.

21.D. Mourenas, A. V. Artemyev, J.-F. Ripoll, et al., “Timescales for electron quasi-linear diffusion by parallel and oblique lower-band chorus waves,” J. Geophys. Res. (2012). doi: 10.1029/2012JA017717.

22.I. Nagano, S. Yagitani, H. Kojima, and H. Matsumoto, “Analysis of wave normal and Poynting vectors of the chorus emissions observed by Geotail,” J. Geomagn. Geoelectr. 48, 299–307 (1996).
https://doi.org/10.5636/jgg.48.299

23.Y. Omura, D. Nunn, H. Matsumoto, and M. J. Rycroft, “A Review of observational, theoretical and numerical studies of VLF triggered emissions,” J. Atoms. and Terr. Phys 53, 351–368 (1991).
https://doi.org/10.1016/0021-9169(91)90031-2

24.M. Parrot, O. Santolik, N. Cornilleau-Wehrlin, et al., “Source location of chorus emissions observed by CLUSTER,” Ann. Geophys. 21, 473–480 (2003).
https://doi.org/10.5194/angeo-21-473-2003

25.M. Parrot, O. Santolik, N. Cornilleau-Wehrlin, et al., “Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data,” Ann. Geophys. 21, 1111–1120 (2003).
https://doi.org/10.5194/angeo-21-1111-2003

26.O. Santolik, D. A. Gurnett, J. S. Pickett, et al., “Spatio-temporal structure of storm-time chorus,” J. Geophys. Res. 108(A7), 1278 (2003). doi 10.1029/2002JA009791.
https://doi.org/10.1029/2002JA009791

27.S. S. Sazhin and M. Hayakawa, “Magnetospheric chorus emissions: A review,” Planet. Space Sci. 40, 681–697 (1992).
https://doi.org/10.1016/0032-0633(92)90009-D

28.D. Shklyar, “Linear waves properties: Plasma Physics,” Plasmas Heliogeophysics 2, 390–489 (2008).

29.D. R. Shklyar, “On the nature of particle energization via resonant wave-particle interaction in the inhomogeneous magnetospheric plasma,” Ann. Geophys. 29, 1179–1188 (2011).
https://doi.org/10.5194/angeo-29-1179-2011

30.V. Y. Trakhtengerts, “A generation mechanism for chorus emission,” Ann. Geophys. 17, 95–100 (1999).

31.B. T. Tsurutani and E. J. Smith, “Postmidnight chorus: A substorm phenomenon,” J. Geophys. Res. 79(1), 118–127 (1974). doi 10.1029/JA079i001p00118.
https://doi.org/10.1029/JA079i001p00118