Temperature stratification of the Arcturus atmosphere
1Sheminova, VA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(4):31-60 |
Start Page: Physics of Stars and Interstellar Medium |
Language: Russian |
Abstract: A brief overview of recent results of the red giant Arcturus study is given. Based on the synthesis of extended wings of the H and K Ca II lines, the LTE one-dimensional modeling for the atmospheres of the Arcturus and the Sun as a star is performed. For this spectral region, the local continuum is found to be underestimated, in the average, by 12 % in the Arcturus atlases. The missing opacity effect is, on average, 43 % for Arcturus and 9 % for the Sun. The fudge factor to the continuum opacity at 390.0, 392.5, 395.0, 398.0, 400.0 nm is 2.2, 1.9, 1.7, 1.55, 1.45 for Arcturus and 1.2, 1.2, 1.2, 1.17, 1.15 for the Sun. The simulation results confirmed conclusively the validity of the basic atmospheric parameters for Arcturus, such as Teff = 4286 K, lg g = 1.66, and the estimates for chemical element abundances derived by Ramirez I., Allende Prieto C. [Aph. J.—2011.—743, N 2.—P. 135]. The obtained model of the Arcturus atmosphere is presented in tabular form. |
Keywords: Arcturus, atmosphere, red giants |
1.V. I. Burnashev, “Catalogue of data on energy distribution in spectra of stars in a uniform spectrophotometric system,” Abastumanskaya Astrofiz. Obs., Byull. 59, 83–90 (1985).
2.A. S. Gadun and V. A. Sheminova, “SPANSAT: the program for LTE calculations of absorption line profiles in stellar atmospheres,” Preprint ITF-88-87 P (Institute for Theoretical Physics, Academy of Sciences of the Ukrainian SSR, Kiev, 1988).
3.I. N. Glushneva, I. V. Voloshina, V. T. Doroshenko, et al., “Energy distribution data in the spectra of 72 stars in the region λλ 3200–7600Å” Trudy Gos. Astron. Inst. Sternberga 54, 3–39 (1984).
4.A. V. Kharitonov, V. M. Tereshchenko, and L. N. Knyazeva, Spectrophotometric Catalogue of Stars (Nauka, Almaty, 1988) [in Russian].
5.V. A. Sheminova, “Turbulence in the photosphere of the Sun as a star. III. Micro-macroturbulence,” Soln. Dannye, No. 4, 70–78 (1984).
6.A. Alves-Brito, J. Melendez, M. Asplund, I. Ramirez, and D. Yong, “Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti,” Astron. Astrophys. 513, A35 (2010).
https://doi.org/10.1051/0004-6361/200913444
7.E. Anders and N. Grevesse, “Abundances of the elements: meteoritic and solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).
https://doi.org/10.1016/0016-7037(89)90286-X
8.T. R. Ayres, “A reexamination of solar upper photosphere models, the calcium abundance, and empirical damping parameters,” Astrophys. J. 213, 296–308 (1977).
https://doi.org/10.1086/155156
9.T. R. Ayres and H. R. Johnson, “The surface gravity and mass of Arcturus,” Astrophys. J. 214, 410–417 (1977).
https://doi.org/10.1086/155265
10.T. R. Ayres and J. L. Linsky, “Stellar model chromospheres. III. Arcturus (K2 III),” Astrophys. J. 200, 660–674 (1975).
https://doi.org/10.1086/153835
11.T. R. Ayres, J. L. Linsky, and R. A. Shine, “Stellar model chromospheres. II. Procyon (F5 IV–V),” Astrophys. J. 192, 93–110 (1974).
https://doi.org/10.1086/153039
12.P. S. Barklem and B. J. O’Mara, “The broadening of strong lines of Ca+, Mg+ and Ba+ by collisions with neutral hydrogen atoms,” Mon. Not. R. Astron. Soc. 300, 836–871 (1998).
https://doi.org/10.1046/j.1365-8711.1998.01942.x
13.C. Beck, W. Schmidt, R. Rezaei, and W. Rammacher, “The signature of chromospheric heating in Ca II H spectra,” Astron. Astrophys. 479, 213–227 (2008).
https://doi.org/10.1051/0004-6361:20078410
14.B. Beeck, M. Schussler, and A. Reiners, “MHD simulations reveal crucial differences between solar and very cool star magnetic structures,” in 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Ed. by C. M. Johns-Krull, M. K. Browning, and A. A. West (Astron. Soc. Pac. Conf. Ser., San Francisco, 2012), Vol. 448, pp. 1071–1076.
15.K. I. T. Brown, D. F. Gray, and S. L. Baliunas, “Long-Term spectroscopic monitoring of Arcturus,” Astrophys. J. 679, 1531–1540 (2008).
https://doi.org/10.1086/587783
16.K. A. Burlov-Vasiljev, E. A. Gurtovenko, and Yu. B. Matvejev, “New Absolute Measurements of the Solar Spectrum 310–685 nm,” Sol. Phys. 157, 51–73 (1995).
https://doi.org/10.1007/BF00680609
17.L. Chemin, C. Soubiran, F. Crifo, et al., “The catalog of radial velocity standard stars for the Gaia RVS: status and progress of the observations,” in SF2A-2010: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, Ed. by S. Boissier, M. Heydari-Malayeri, R. Samadi, and D. Valls-Gabaud (2010), pp. 29–30.
18.H. M. Dyck, J. A. Benson, G. T. van Belle, and S. T. Ridgway, “Radii and effective temperatures for K and M giants and super giants,” Astron. J. 111, 1705–1712 (1996).
https://doi.org/10.1086/117910
19.O. J. Eggen, “The Arcturus group,” Publ. Astron. Soc. Pac. 83, 271–285 (1971).
https://doi.org/10.1086/129120
20.T. D. Fay, W. L. Stein, and W. H. Warren, “Scanner observations of selected cool stars,” Publ. Astron. Soc. Pac. 86, 772–790 (1974).
https://doi.org/10.1086/129673
21.J. M. Fontenla, K. S. Balasubramaniam, and J. Harder, “Semiempirical models of the solar atmosphere. II. The quiet-Sun low chromosphere at moderate resolution,” Astrophys. J. 667, 1243–1257 (2007).
https://doi.org/10.1086/520319
22.U. Frisk, H. L. Nordh, S. G. Olofsson, R. A. Bell, and B. Gustafsson, “The temperature of Arcturus,” Mon. Not. R. Astron. Soc. 199, 471–481 (1982).
23.D. F. Gray, “The temperature dependence of rotation and turbulence in giant stars,” Astrophys. J. 262, 682–699 (1982).
https://doi.org/10.1086/160461
24.D. F. Gray and K. I. T. Brown, “The rotation of Arcturus and active longitudes on giant stars,” Publ. Astron. Soc. Pac. 118, 1112–1118 (2006).
https://doi.org/10.1086/507077
25.R. F. Griffin, A Photometric Atlas of the Spectrum of Arcturus, 3600–8825 (Cambridge Philos. Soc., Cambridge, 1968).
26.R. E. M. Griffin and A. E. Lynas-Gray, “The effective temperature of Arcturus,” Astron. J. 117, 2998–3006 (1999).
https://doi.org/10.1086/300878
27.F. Grupp, R. L. Kurucz, and K. Tan, “New extended atomic data in cool star model atmospheres. Using Kuruczs new iron data in MAFAGS-OS models,” Astron. Astrophys. 503, 177–181 (2009).
https://doi.org/10.1051/0004-6361/200912302
28.E. A. Gurtovenko and V. A. Sheminova, “‘Crossing’ method for studying the turbulence in solar and stellar atmospheres. I. Application to the Sun,” Sol. Phys. 106, 237–247 (1986).
https://doi.org/10.1007/BF00158494
29.B. Gustafsson and R. A. Bell, “The colours of G and K type giant stars. I,” Astron. Astrophys. 74, 313–352 (1979).
30.B. Gustafsson, B. Edvardsson, K. Eriksson, et al., “A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties,” Astron. Astrophys. 486, 951–970 (2008).
https://doi.org/10.1051/0004-6361:200809724
31.A. P. Hatzes and W. D. Cochran, “Short-Period radial velocity variations of Alpha Bootis: evidence for radial pulsations,” Astrophys. J. 422, 366–373 (1994).
https://doi.org/10.1086/173731
32.P. H. Hauschildt and E. Baron, “Numerical solution of the expanding stellar atmosphere problem,” J. Comput. Appl. Math. 109, 41–63 (1999).
https://doi.org/10.1016/S0377-0427(99)00153-3
33.P. H. Hauschildt, A. Schweitzer, F. Allard, et al., “Cool stellar atmospheres,” in New Quests in Stellar Astrophysics: The Link Between Stars and Cosmology, Ed. by M. Chavez, A. Bressan, A. Buzzoni, and D. Mayya (Astrophys. Space Sci. Libr., Dordrecht, 2002), Vol. 274, pp. 15–26.
https://doi.org/10.1007/978-94-010-0393-3_2
34.W. Hayek, M. Asplund, M. Carlsson, et al., “Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star,” Astron. Astrophys. 517, A49 (2010).
https://doi.org/10.1051/0004-6361/201014210
35.V. M. J. Henriques and D. Kiselman, “Temperature stratification in the Suns photosphere in high horizontal resolution using Ca II H filtergrams,” Mem. Soc. Astron. Ital. 80, 639–642 (2009).
36.K. Hinkle, L. Wallace, W. Livingston, et al., “High resolution infrared, visible and ultraviolet spectral atlases of the Sun and Arcturus,” in Proceedings of 12th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Ed. by A. Brown, G. M. Harper, and T. R. Ayres (Univ. of Colorado, Colorado, 2003), pp. 851–856.
37.E. Isik, D. Schmitt, and M. Schussler, “Magnetic flux generation and transport in cool stars,” Astron. Astrophys. 528, A135 (2011).
https://doi.org/10.1051/0004-6361/201014501
38.H. R. Johnson, J. G. Collins, B. Krupp, and R. A. Bell, “The line blanketing and structure of the atmosphere of Arcturus,” Astrophys. J. 212, 760–767 (1977).
https://doi.org/10.1086/155101
39.B. R. Jorgensen and L. Lindegren, “Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting,” Astron. Astrophys. 436, 127–143 (2005).
https://doi.org/10.1051/0004-6361:20042185
40.T. Kipper, M. Kipper, and J. Sitska, “Analysis of the spectrum of Arcturus,” Preprint No. 64 (W. Struve Astrophysical Observatory of Tartu, Academy of Sciences of the Estoninan SSR, Tartu, 1981).
41.M. Kuker and G. Rudiger, “Differential rotation and meridional flow on the lower zero-age main sequence: Reynolds stress versus baroclinic flow,” Astron. Nachr. 332, 933–941 (2011).
https://doi.org/10.1002/asna.201111628
42.F. Kupka, N. Piskunov, T. A. Ryabchikova, H. C. Stempels, and W. W. Weiss, “VALD-2: progress of the Vienna Atomic Line Data Base,” Astron. Astrophys., Suppl. Ser. 138, 119–133 (1999).
https://doi.org/10.1051/aas:1999267
43.R. L. Kurucz, “Atlas: a computer program for calculating model stellar atmospheres,” SAO Special Report, No. 309 (1970).
44.R. L. Kurucz, “ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera,” Mem. Soc. Astron. Ital. Suppl. 8, 14–24 (2005).
45.J. L. Linsky and E. H. Avrett, “The solar H and K lines,” Publ. Astron. Soc. Pac. 82, 169–248 (1970).
https://doi.org/10.1086/128904
46.H. G. Ludwig, R. Samadi, M. Steffen, et al., “Hydrodynamical simulations of convection-related stellar microvariability. II. The enigmatic granulation background of the CoRoT target HD 49933,” Astron. Astrophys. 506, 167–173 (2009).
https://doi.org/10.1051/0004-6361/200911930
47.R. Mackle, H. Holweger, “A model-atmosphere analysis of the spectrum of Arcturus,” Astron. Astrophys. 38, 239–257 (1975).
48.J. F. Navarro, A. Helmi, K. C. Freeman, “The extragalactic origin of the Arcturus group,” Astrophys. J., Lett. 601, L43–L46 (2004).
https://doi.org/10.1086/381751
49.H. Neckel, “Spectral atlas of solar absolute disk-averaged and disk-center intensity from 3290 to 12510 Å (Brault and Neckel, 1987) now available from Hamburg Observatory anonymous FTP site,” announcement in Sol. Phys. 184, 421 (1999).
https://doi.org/10.1023/A:1017165208013
50.H. Neckel and D. Labs, “The solar Radiation between 3300 and 12500 A,” Sol. Phys. 90, 205–258 (1984).
https://doi.org/10.1007/BF00173953
51.S. P. Owocki and L. H. Auer, “Two-Dimensional radiative transfer. II. The wings of Ca K and Mg K,” Astrophys. J. 241, 448–458 (1980).
https://doi.org/10.1086/158358
52.Ya. V. Pavlenko, “Model atmospheres of red giants,” Astron. Rep. 47, 59–67 (2003).
https://doi.org/10.1134/1.1538496
53.M. A. C. Perryman, L. Lindegren, J. Kovalevsky, et al., “The HIPPARCOS catalogue,” Astron. Astrophys. 323, L49–L52 (1997).
54.R. C. Peterson, C. M. Dalle Ore, and R. L. Kurucz, “The nonsolar abundance ratios of Arcturus deduced from spectrum synthesis,” Astrophys. J. 404, 333–347 (1993).
https://doi.org/10.1086/172283
55.N. E. Piskunov, F. Kupka, T. A. Ryabchikova, W. W. Weiss, and C. S. Jeffery, “VALD: the Vienna Atomic Line Data Base,” Astron. Astrophys., Suppl. Ser. 112, 525–535 (1995).
56.I. Ramirez and C. Allende Prieto, “Fundamental parameters and chemical composition of Arcturus,” Astrophys. J. 743, 135 (2011).
https://doi.org/10.1088/0004-637X/743/2/135
57.I. Ramirez, C. Allende Prieto, L. Koesterke, D. L. Lambert, and M. Asplund, “Granulation in K-type dwarf stars. II. Hydrodynamic simulations and 3D spectrum synthesis,” Astron. Astrophys. 501, 1087–1101 (2009).
https://doi.org/10.1051/0004-6361/200911741
58.L. H. M. Rouppe van der Voort, “Penumbral structure and kinematics from high-spatial-resolution observations of Ca II K,” Astron. Astrophys. 389, 1020–1038 (2002).
https://doi.org/10.1051/0004-6361:20020638
59.L. Sbordone, P. Bonifacio, F. Castelli, and R. L. Kurucz, “ATLAS and SYNTHE under Linux,” Mem. Soc. Astron. Ital. Suppl. 5, 93–96 (2004).
60.N. R. Sheeley, “The average profile of the solar K-line during the Sunspot cycle,” Astrophys. J. 147, 1106–1108 (1967).
https://doi.org/10.1086/149099
61.V. A. Sheminova, “The wings of Ca II H and K as photospheric diagnostics and the reliability of one-dimensional photosphere modeling,” Sol. Phys. 280, 83–102 (2012).
https://doi.org/10.1007/s11207-012-0066-x
62.V. A. Sheminova and A. S. Gadun, “Fourier analysis of Fe I lines in spectra of the Sun, alpha Centauri A, Procyon, Arcturus and Canopus,” Kinematics Phys. Celestial Bodies 14, 169–179 (1998).
63.V. A. Sheminova, R. J. Rutten, and L. H. M. Rouppe van der Voort, “The wings of Ca II H and K as solar fluxtube diagnostics,” Astron. Astrophys. 437, 1069–1080 (2005).
https://doi.org/10.1051/0004-6361:20042593
64.R. A. Shine and J. Linsky, “A facular model based on the wings of the Ca II lines,” Sol. Phys. 37, 145–150 (1975).
https://doi.org/10.1007/BF00157850
65.C. I. Short, E. A. Campbell, H. Pickup, and P. H. Hauschildt, “Modeling the near-UV band of GK stars. II. Non-LTE models,” Astrophys. J. 747, 143 (2012).
https://doi.org/10.1088/0004-637X/747/2/143
66.C. I. Short and P. H. Hauschildt, “Non-LTE modeling of the near-ultraviolet band of late-type stars,” Astrophys. J. 691, 1634–1647 (2009).
https://doi.org/10.1088/0004-637X/691/2/1634
67.C. I. Short and P. H. Hauschildt, “Modeling the near-ultraviolet band of GK stars. I. Local thermodynamic equilibrium models,” Astrophys. J. 718, 1416–1427 (2010).
https://doi.org/10.1088/0004-637X/718/2/1416
68.C. I. Short and J. B. Lester, “Missing opacity in the atmospheric models of red giants,” Astrophys. J. 436, L165–L168 (1994).
https://doi.org/10.1086/187658
69.Y. Takeda, “Spectroscopic study of microturbulence in the atmosphere of Arcturus,” Astron. Astrophys. 253, 487–497 (1992).
70.G. Thuillier, M. Herse, D. Labs, et al., “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
https://doi.org/10.1023/A:1024048429145
71.V. Trimble and R. A. Bell, “Spectroscopic determination of stellar masses: Mene, Mene, Tekel, Arcturus,” Q. J. R. Astron. Soc. 22, 361–379 (1981).
72.V. V. Tsymbal, “STARSP: a software system for the analysis of the spectra of normal stars,” in Model Atmospheres and Stellar Spectra: 5th Vienna Workshop, Ed. by S. J. Adelman, F. Kupka, and W. W. Weiss (Astron. Soc. Pac. Conf. Ser., San Francisco, 1996), Vol. 108, pp. 198–199.
73.N. H. Turner, T. S. Brummelaar, and B. D. Mason, “Adaptive optics observations of Arcturus using the Mount Wilson 100-inch telescope,” Publ. Astron. Soc. Pac. 111, 556–558 (1999).
https://doi.org/10.1086/316353
74.H. Uitenbroek and S. Criscuoli, “Why one-dimensional models fail in the diagnosis of average spectra from inhomogeneous stellar atmospheres,” Astrophys. J. 736, 69 (2011).
https://doi.org/10.1088/0004-637X/736/1/69
75.F. van Leeuwen, “Validation of the new Hipparcos reduction,” Astron. Astrophys. 474, 653–664 (2007).
https://doi.org/10.1051/0004-6361:20078357
76.T. Verhoelst, P. J. Bordé, G. Perrin, et al., “Is Arcturus a well-understood K giant? Test of model atmospheres and potential companion detection by near-infrared interferometry,” Astron. Astrophys. 435, 563–574 (2005).
https://doi.org/10.1051/0004-6361:20042356
77.R. V. Willstrop, “Absolute measures of stellar radiation. II,” Mem. R. Astron. Soc. 69, 83–143 (1965).