λ17.1 nm Fe IX Line in the radiation spectrum of slow magneto-acoustic waves propagating in the solar crown
1Mamedov, SG, Aliyeva, ZF, Alisheva, KI 1Nasir al-Din al-Tusi Shamakhi Astrophysical Observatory, Pirqulu, Azerbaijan |
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(6):49-61 |
https://doi.org/10.15407/kfnt2021.06.049 |
Start Page: Solar Physics |
Language: Ukrainian |
Abstract: The profiles of the X 17.1 nm Fe IX line in the emission spectrum of slow magneto-acoustic waves propagating in coronal loops are calculated for cases of an optically thin layer and constant density. The line profiles were calculated for the following parameter values: the amplitude of the velocity at the wave υ0 = 10 km/s, the width of the coronal loop is 2000 km and 5000 km, the wavelength Λ = 20000 km and 50000 km, the value of the Doppler width Δλd = 1 pm, and at values of the angle of view and at different phases of the wave. The true value of the energy flux density is 622 erg⋅cm-2s-1. The calculated values of the energy flux density strongly depend on the angle of view and on the wave phase and range from zero at large values of theta to 2x 103 erg⋅cm-2s-1, the values of the Doppler velocities υd and the veiocities of non-thermal motions υnt at small values of Θ have a maximum value of ~12 km/s and decrease almost to zero at large values of Θ. At small values of the angle of the line of sight (Θ 30°, the asymmetry is almost invisible. |
Keywords: MHD waves, slow magneto-acoustic waves, solar corona |
1. Aschwanden M. J. (2004) Physics of the solar corona — an introduction. (Praxis, Chichester). 1st Edition 2005 paperback.
2. Brooks D. H., Warren H. P. (2016) Measurements of non-thermal line widths in solar active regions. Astrophys. J. 820. 63.
https://doi.org/10.3847/0004-637X/820/1/63
3. Bruner E. C. (1978) Dynamics of the solar transition zone. Astrophys. J. 226. 1140—1146.
https://doi.org/10.1086/156691
4. Сurdt W., Wang T. J., Innes D. E., Solanki S. K., Damasch I. E., Kliem B., Offman L. (2002) Doppler oscillations in hot coronal loops. ESA sub SP-506.
5. De Moortel I. (2005) An overview of coronal seismology. Phil. Trans. Roy. Soc. London A. 363. 2743—2760.
https://doi.org/10.1098/rsta.2005.1665
6. De Moortel I. (2006) Propagating magnetohydrodynamics waves in coronal loops. Phil. Trans. Roy. Soc. London A. 364. 461.
https://doi.org/10.1098/rsta.2005.1710
7. De Moortel I. (2009) Longitudinal waves in coronal loops. Space Sci. Rev. 149. 65—81.
https://doi.org/10.1007/s11214-009-9526-5
8. De Moortel I., Hood A. W., Ireland J., Walsh R. W. (2002) Longitudinal intensity oscillations in coronal loops observed with trace. II. Discussion of measured parameters. Solar Phys. 209. 89—108.
https://doi.org/10.1023/A:1020960505133
9. De Moortel I., Ireland J., Walsh R. W. (2000) Observation of oscillations in coronal loops. Astron. and Astrophys. 355, l23—l26.
https://doi.org/10.1063/1.1324943
10. De Moortel I., Nakariakov V. M. (2012) Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Phil. Trans. Roy. Soc. London A. 370. 3193—3216.
https://doi.org/10.1098/rsta.2011.0640
11. De Pontieu B., McIntosh S. W. (2010) Quasi-periodic propagating signals in the solar corona: The signature of magneto-acoustic waves or high-velocity upflows. Astrophys. J. 722. 1013—1029.
https://doi.org/10.1088/0004-637X/722/2/1013
12. De Pontieu B., McIntosh S. W., Hansteen V. H., Schrijver C. J. (2009) Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. 701. L1—L6.
https://doi.org/10.1088/0004-637X/701/1/L1
13. Devlen E., Zengin Gamurdan D., YardimHi M., Pekhnlh E. R. (2017) A new model for heating of the solar North Polar Coronal Hole. Mon. Notic. Roy. Astron. Soc. 467. 133—144.
https://doi.org/10.1093/mnras/stx090
14. Kitagawa N., Yokoyama T., Imada S., Hara H. (2010) Mode identification of MHD waves in an active region observed with Hinode/Eis. Astrophys. J. 721. 744—749.
https://doi.org/10.1088/0004-637X/721/1/744
15. Kjeldseth-Moe O., Brekke P. (1998) Time variability of active region loops observed with the coronal diagnostic spectrometer (CDS) on SOHO. Solar Phys. 182. 73—95.
https://doi.org/10.1023/A:1005031711233
16. Krishna Prasad S., Banerjee D., Van Doorsselaere T., Singh J. (2012) Omnipresent long-period intensity oscillations in open coronal structures. Astron. and Astrophys. 546. A50.
https://doi.org/10.1051/0004-6361/201219885
17. Mamedov S. G., Shabanova Z. F., et al. (2014) About heating of the solar corona. Azerbaijan Astron. J. 14. 62.
18. Mariska J. T., Muglach K. (2010) Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on hinod. Astrophys. J. 713, 573—583.
https://doi.org/10.1088/0004-637X/713/1/573
19. Mariska В. J. T., Warren H. P., Williams D. R., Watanabe T. (2008) Observations of Doppler shift oscillations with the EUV imaging spectrometer on Hinode. Astrophys. J. 681. L41—L44.
https://doi.org/10.1086/590341
20. McEwan M. P., De Moortel I. (2006) Longitudinal intensity oscillations observed with TRACE: evidence of fine-scale structure. Astron. and Astrophys. 448. 763—773.
https://doi.org/10.1051/0004-6361:20054041
21. McIntosh S. W., De Pontieu B. (2009) High-speed transition region and coronal upflows in the Quiet Sun. Astrophys. J. 707. 524—538.
https://doi.org/10.1088/0004-637X/707/1/524
22. Nakariakov V. M., Verwichte E. (2005) Coronal waves and oscillations. Liv. Revs in Solar Phys. 2. 3.
https://doi.org/10.12942/lrsp-2005-3
23. Ofman L., Nakariakov V. M., Deforest C. E. (1999) Slow magnetosonic waves in coronal plumes. Astrophys. J. 514. 441—447.
https://doi.org/10.1086/306944
24. Ofman L., Wang T. (2002) Hot coronal loop oscillations observed by sumer: Slow magnetosonic wave damping by thermal conduction. Astrophys. J. 580. L85—L88.
https://doi.org/10.1086/345548
25. O’Shea E., Banerjee D., Doyle J. G. (2007) A statistical study of wave propagation in coronal holes. Astron. and Astrophys. 463, 713—725.
https://doi.org/10.1051/0004-6361:20065592
26. Porter L. J., Klimchuk J. A., Sturrock P. A. (1994) The role of MHD waves in heating of the solar corona. Astrophys. J. 435. 482—501.
https://doi.org/10.1086/174830
27. Sakurai T., Ichimoto K., Raju K. P., Singh J. (2002) Spectroscopic observation of coronalwaves. Solar Phys. 209. 265—286.
https://doi.org/10.1023/A:1021297313448
28. Threlfall J., DeMoortel I., McIntosh S. W., Bethge C. (2013) First comparison of wave observations from CoMP and AIA/SDO. Astron. and Astrophys. 556, A124.
https://doi.org/10.1051/0004-6361/201321782
29. Verwichte E., Marsh M., Foullon C., Van Doorsselaere T., De Moortel I., Hood A. W., Nakariakov A. M. (2010) Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves. Astrophys. J. 724. L194—L198.
https://doi.org/10.1088/2041-8205/724/2/L194
30. Wang T. J., Ofman L., Davila J. M., Mariska J. T. (2009) Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astron. and Astrophys. 503, L25—L28.
https://doi.org/10.1051/0004-6361/200912534
31. Wang T. J., Solanki S. K., Curdt W., Innes D. E., Dammasch L. E. (2002) Oscilating hot loops observed by SUMER. ESASP.508.465W
32. Wang T. J., Solanki S. K., Innes D. E., Curdt W., Marsch E. (2003) Slow-mode standing waves observed by SUMER in hot coronal loops. Astron. and Astrophys. 402, L17—L20.
https://doi.org/10.1051/0004-6361:20030448