The meridional circulation and period of the solar dynamo cycle

Heading: 
Brayko, PG
Kinemat. fiz. nebesnyh tel (Online) 2007, 23(6):359-366
https://doi.org/10.3103/S0884591307060049
Language: Russian
Abstract: 

The transition condition from the tachocline to the solar convective zone with a change of diffusion coefficient is considered. The topology of the magnetic fields participating in the process of dynamo is revised. We accept that the fields with intermediate values (of the order of 10 mT) have a dominant role in generating new cycle fields. It is found that the use of meridional circulation results in the increase of dynamo-wave period comparable with observed one. This indicates that α and Ω-effects are unimportant in the calculation of solar cycle period but they are important for the determination of peak value.

Keywords: solar dynamo cycle
References: 
  1. Braginskii, S.I., On the Magnetic Field Self-Excitation in the Motion of a Well Conducting Liquid, Zhurn. Eksperim. i Teor. Fiz., 1964, vol. 47, pp. 1084–1098.
  2. Vainshtein, S.I., Zel’dovich, Ya.B., and Ruzmaikin, A.A., Turbulentnoe dinamo v astrofizike (Turbulent Dynamo in Astrophysics), Moscow: Nauka, 1980.
  3. Kichatinov, L.L. and Mazur, M.V., Emergence of Magnetic Fields from the Convective Envelope, and the Activity Cycle Period, Pis’ma v Astron. Zhurn., 1999, vol. 25, no. 7, pp. 549–553.
  4. Babcock, B.W., The Topology of the Sun’s Magnetic Field and the 22-Year Cycle, Astrophys. J., 1961, vol. 133, no. 2, pp. 572–587.
  5. Brandenburg, A. and Schmitt, D., Simulations of an α-Effect Due to Magnetic Buoyancy, Astron. and Astrophys., 1998, vol. 338, pp. L55–L58.
  6. Brayko, P.G., Evolution of Large-Scale Magnetic Fields in the Sun, Kinematics and Physics of Celestial Bodies. Suppl., 2005, no. 5, pp. 176–178.
  7. Choudhuri, A.R., Schüssler, M., and Dikpati M., The Solar Dynamo with Meridional Circulation, Astron. and Astrophys., 1995, vol. 303, no. 2, pp. L29–L32.
  8. Dikpati, M. and Charbonneau, P.A., A Babcock-Leighton Flux Transport Dynamo with Solar-Like Differential Rotation, Astrophys. J., 1999, vol. 518, no. 1, pp. 508–520.
  9. Dikpati, M. and Gilman, P.A., Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation Using a Shallow-Water Model, Astrophys. J., 2001, vol. 551, no. 1, pp. 536–564.
  10. Durney, B.R., On a Babcock-Leighton Dynamo Model with a Deep-Seated Generating Layer for the Toroidal Magnetic Field, Solar Phys., 1995, vol. 160, no. 2, pp. 213–235.
  11. Ferraro, V.C., The Non-Uniform Rotation of the Sun and Its Magnetic Field, Mon. Notic. Roy. Astron. Soc., 1937, vol. 97, pp. 458–472.
  12. Giles, P.M., Duvall, T.L., Jr., Scherrer, P.H, and Bogart, R.S., Subsurface Flow of Material from the Sun’s Equator to Its Poles, Nature, 1997, vol. 390, pp. 52–54.
  13. Kitchatinov, L.L., Do Dynamo-Waves Propagate along Isorotation Surfaces?, Astron. and Astrophys., 2002, vol. 394, pp. 1135–1139.
  14. Köhler, H., The Solar Dynamo and Estimates of the Magnetic Diffusivity and the α-Effect, Astron. and Astrophys., 1973, vol. 25, no. 3, pp. 467–476.
  15. Krivodubskij, V.N., Turbulent Dynamo Near Tachocline and Reconstruction of Azimuthal Magnetic Field in the Solar Convective Zone, Astron. Nachr., 2005, vol. 326, no. 1, pp. 61–74.
  16. Nandy, D. and Choudhuri, A.R., Toward a Mean Field Formulation of the Babcock-Leighton Type Solar Dynamo. I. Alpha-Coefficient Versus Durney’s Double-Ring Approach, Astrophys. J., 2001, vol. 551, no. 1, pp. 576–585.
  17. Nandy, D. and Choudhuri, A.R., Explaining the Latitudinal Distribution of Sunspots with Deep Meridional Flow, Science, 2002, vol. 296, no. 5573, pp. 1671–1673.
  18. Ossendrijver, M.A.J.H., The Dynamo Effect of Magnetic Flux Tubes, Astron. and Astrophys., 2000, vol. 359, pp. 1205–1210.
  19. Parker, E.N., Hydromagnetic Dynamo Models, Astrophys. J., 1955, vol. 122, no. 2, pp. 293–314.
  20. Parker, E.N., A Solar Dynamo Surface Wave at the Interface between Convection and Nonuniform Rotation, ibid., 1993, vol. 408, no. 2, pp. 707–719.
  21. Patron, F., Hill, E., Rhodes, S., et al., Velocity Fields within the Solar Convection Zone: Evidence from Oscillation Ring Diagram Analysis of Mount Wilson Dopplergrams, Astrophys. J., 1995, vol. 455, no. 2, pp. 746–757.
  22. Rüdiger, G. and Arlt, R., Physics of the Solar Cycle, Advances in Nonlinear Dynamos (The Fluid Mechanics of Astrophysics and Geophysics), Ferriz-Mas, A. and Nunez, M., Eds., London, New York: Taylor and Francis, 2003, vol. 9, pp. 147–195.
  23. Steenbeck, M. and Krause, F., Zur Dynamo-Theorie stellarer und planetarer Magnetfelder. I. Berechnung sonnenanhlicher Wechselfeldgeneratoren, Astron. Nachr., 1969, vol. 291, no. 2, pp. 49–88.
  24. Stix, M., The Sun, Berlin: Springer-Verlag, 1989.
  25. Thelen, J.-C., Non-Linear αΩ-Dynamos Driven by Magnetic Buoyancy, Mon. Notic. Roy. Astron. Soc., 2000, vol. 315, no. 1, pp. 165–183.
  26. Toomre, J., Christensen-Dalsgaard, J., Howe, R., et al., Time Variability of Rotation in Solar Convection Zone from SOI-MDI, Solar. Phys., 2000, vol. 192, no. 1/2, pp. 437–448.
  27. Yoshimura, H., Solar-Cycle Dynamo Wave Propagation, Astrophys J., 1975, vol. 201, no. 3, pp. 740–748.
  28. Yoshimura, H., A Model of the Solar Cycle Driven by the Dynamo Action of the Global Convection in the Solar Convective Zone, Astrophys. J. Suppl. Ser., 1975, vol. 29, no. 287, pp. 467–494.
  29. Wang, Y.-M., Sheeley, N.R., and Nash, A.G., A New Cycle Model Including Meridional Circulation, Astrophys. J., 1991, vol. 383, no. 1, pp. 431–442.