Oscillator strengths of selected Fe II lines in the range λλ 300-400 nm

Heading: 
1Shchukina, NG, 1Vasilieva, IE
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(2):3-21
Start Page: Solar Physics
Language: Russian
Abstract: 

We review the literature on the determination of oscillator strengths for ionized iron Fe II lines. Particular attention is given to the lines of the ultraviolet region. The oscillator strengths are calculated for selected 33 Fe II lines observed in the solar spectrum between λ 300 and 400 nm. The results were obtained by fitting to the solar equivalent widths.

Keywords: oscillator of the lines, Sun
References: 

1.A. A. Boyarchuk and I. S. Savanov, “Oscillator Strengths of Ionized Iron Lines,” Izv. Krym. Astrofiz. Observ. 74, 49–69 (1986).

2.I. O. Vakarchuk, Theory of Stellar Spectra: Handbook (Franko National Univ., Lviv, 2002) [Ukrainian].

3.E. A. Gurtovenko and R. I. Kostyk, Fraunhofer Spectrum and a System of Solar Oscillator Strengths (Naukova Dumka, Kyiv, 1989) [Russian].

4.E. Anders and N. Grevesse, “Abundances of the Elements—Meteoritic and Solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).
https://doi.org/10.1016/0016-7037(89)90286-X

5.S. D. Anstee and B. J. O’Mara, “Width Cross Sections for Collisional Broadening of s-p and p-s Transitions by Atomic Hydrogen,” Mon. Not. R. Astron. Soc. 276, 859–866 (1995).

6.M. Asplund, “Line Formation in Solar Granulation. III. The Photospheric Si and Meteoritic Fe Abundances,” Astron. Astrophys. 359, 755–758 (2000).

7.M. Asplund, B. Gustafsson, D. Kiselman, and K. Eriksson, “Line-Blanketed Model Atmospheres for R Coronae Borealis Stars and Hydrogen-Deficient Carbon Stars,” Astron. Astrophys. 318, 521–534 (1997).

8.P. S. Barklem, B. J. O’Mara, and J. E. Ross, “The Broadening of d-f and f-d Transitions by Collisions with Neutral Hydrogen Atoms,” Mon. Not. R. Astron. Soc. 296, 1057–1060 (1998).
https://doi.org/10.1046/j.1365-8711.1998.01484.x

9.B. Baschek, T. Garz, H. Holweger, and J. Richter, “Experimental Oscillator Strengths of Fe II Lines and the Solar Iron Abundance,” Astron. Astrophys. 4, 229–233 (1970).

10.E. Biemont, M. Baudoux, R. L. Kurucz, et al., “The Solar Abundance of Iron: A’ Final’ Word,” Astron. Astrophys. 249, 539–544 (1991).

11.D. E. Blackwell, M. J. Shallis, and G. J. Simmons, “Oscillator Strengths of Fe II Lines Derived from the Solar Spectrum. Choice of Solar Model Atmosphere,” Astron. Astrophys. 81, 340–343 (1980).

12.J. M. Borrero, L. R. Bellot Rubio, P. S. Barklem, and J. C. del Toro Iniesta, “Accurate Atomic Parameters for Near-Infrared Spectral Lines,” Astron. Astrophys. 404, 749–762 (2003).
https://doi.org/10.1051/0004-6361:20030548

13.F. Castelli and R. L. Kurucz, “New Fe II Energy Levels from Stellar Spectra,” Astron. Astrophys. 520, A57–A87 (2010).
https://doi.org/10.1051/0004-6361/201015126

14.C. H. Corliss and W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements Derived from the NBS Tables of Spectral-Line Intensities, NBS Monogr. (U. S.), no. 53 (US Depart. of Commerce, National Bureau of Standards, Washington, DC, 1962).

15.L. Delbouille, G. Roland, and L. Neven, Atlas photometrique du spectre solaire de λ 3000 a λ10000 Å (L’Inst. d’Astrophys. de l’Univ., Liège, 1973).

16.J. R. Fuhr, G. A. Martin, and W. L. Wiese, “Atomic Transition Probabilities. Iron through Nickel,” J. Phys. Chem. Ref. Data 17,Suppl. 4 (1988).

17.J. R. Fuhr and W. L. Wiese, “A Critical Compilation of Atomic Transition Probabilities for Neutral and Singly Ionized Iron,” J. Phys. Chem. Ref. Data 35, 1669–1809 (2006).
https://doi.org/10.1063/1.2218876

18.K. Fuhrmann, M. Pfeiffer, C. Frank, et al., “The Surface Gravities of Cool Dwarf Stars Revisited,” Astron. Astrophys. 323, 909–922 (1997).

19.O. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, “The Harvard-Smithsonian Reference Atmosphere,” Solar Phys. 18, 347–365 (1971).
https://doi.org/10.1007/BF00149057

20.S. Giridhar and A. Arellano Ferro, “A Critical Compilation of Oscillator Strengths for Fe II Lines,” Rev. Mex. Astron. Astrofis. 31, 23–37 (1995).

21.G. L. Grasdalen, M. Huber, and W. H. Parkinson, “Absolute gf-Values for Fe I and Fe II Lines,” Astrophys. J. 156, 1153–1173 (1969).
https://doi.org/10.1086/150042

22.N. Grevesse and A. J. Sauval, “Standard Solar Composition,” Space Sci. Rev. 85, 161–174 (1998).
https://doi.org/10.1023/A:1005161325181

23.N. Grevesse and A. J. Sauval, “The Solar Abundance of Iron and the Photospheric Model,” Astron. Astrophys. 347, 348–354 (1999).

24.H. R. Griem, Spectral Line Broadening by Plasmas (Academic Press, Inc., New York, 1974).

25.H.-G. Groth, “Die Atmosphäre des A2-Übergiganten α Cygni. II. Teil. Quantitative Analyse,” Z. Astrophys. 51, 231–285 (1961).

26.E. A. Gurtovenko and R. I. Kostik, “On the Establishment of Internally Consistent Solar Scales of Oscillator Strengths and Abundances of Chemical Elements. Part Two. On the Errors of the Oscillator Strengths of Fe I Lines in the Kurucz-Peytremann gf-Scale,” Astron. Astrophys. 101, 132–133 (1981).

27.B. Gustafsson, R. A. Bell, K. Eriksson, and A. Nordlund, “A Grid of Model Atmospheres for Metal-Deficient Giant Stars. I,” Astron. Astrophys. 42, 407–432 (1975).

28.P. Hannaford, R. M. Lowe, N. Grevesse, and A. Noels, “Lifetimes in Fe II and the Solar Abundance of Iron,” Astron. Astrophys. 259, 301–306 (1992).

29.C. Heise and M. Kock, “Oscillator Strengths of Some Weak Fe II Lines of Astrophysical Interest,” Astron. Astrophys. 230, 244–247 (1990).

30.R. Hirata and T. Horaguchi, “Atomic Spectral Line List,” 1995. ftp://cdsarc.u-strasbg.fr/pub/cats/VI/69

31.H. Holweger and E. A. Müller, “The Photospheric Barium Spectrum: Solar Abundance and Collision Broadening of Ba II Lines by Hydrogen,” Solar Phys. 39, 19–30 (1974).
https://doi.org/10.1007/BF00154968

32.M. C. E. Huber, “Hook-Method Measurements of gf-Values for Ultraviolet Fe I and Fe II Lines on a Shock Tube,” Astrophys. J. 190, 237–242 (1974).
https://doi.org/10.1086/152868

33.G. Israelian, R. Rebolo, R. G. Lopez, et al., “Oxygen in the Very Early Galaxy,” Astrophys. J. 551, 833–851 (2001).
https://doi.org/10.1086/320225

34.A. J. Korn, J. Shi, and T. Gehren, “Kinetic Equilibrium of Iron in the Atmospheres of Cool Stars. III. The Ionization Equilibrium of Selected Reference Stars,” Astron. Astrophys. 407, 691–703 (2003).
https://doi.org/10.1051/0004-6361:20030907

35.R. I. Kostik, N. G. Shchukina, and R. J. Rutten, “The Solar Iron Abundance: Not the Last Word,” Astron. Astrophys. 305, 325–342 (1996).

36.S. Kroll and M. Kock, “Fe II Oscillator Strengths,” Astron. Astrophys., Suppl. Ser. 67, 225–235 (1987).

37.R. L. Kurucz, “Model Atmospheres for G, F, A, B, and O Stars,” Astrophys. J., Suppl. Ser. 40, 1–340 (1979).
https://doi.org/10.1086/190589

38.R. L. Kurucz, “Semiempirical Calculation of gf Values. IV: Fe II,” SAO Special Report, No. 390, 1–314 (1981).

39.R. L. Kurucz, “Semiempirical Calculation of gf values for the Iron Group,” in Transactions of the International Astronomical Union, Ed. by M. McNally (Kluwer, Dordrecht, 1988), vol. XXB, pp. 168–172.

40.R. L. Kurucz, “ATLAS9 Stellar Atmospheres Programs and 2 km/s Grid,” CD-ROM no. 13 (Smithsonian Astrophys. Obs., Cambridge, 1993).

41.R. L. Kurucz and E. Peytremann, “A Table of Semiempirical gf Values. Part 1: Wavelengths: 5.2682 to 272.3380 nm,” SAO Special Report, no. 362, 1–1219 (1975).

42.K. Lodders, “Solar System Abundances and Condensation Temperatures of the Elements,” Astrophys. J. 591, 1220–1247 (2003).
https://doi.org/10.1086/375492

43.P. Maltby, E. H. Avrett, M. Carlsson, et al., “New Sunspot Umbral Model and Its Variation with the Solar Cycle,” Astrophys. J. 306, 284–303 (1986).
https://doi.org/10.1086/164342

44.W. C. Martin, J. Sugar, A. Musgrove, et al., “NIST Database for Atomic Spectroscopy, ver. 1.0,” NIST Standard Reference Database 61 (1995).

45.J. Meléndez and B. Barbuy, “Both Accurate and Precise gf-Values for Fe II Lines,” Astron. Astrophys. 497, 611–617 (2009).
https://doi.org/10.1051/0004-6361/200811508

46.J. Meléndez, N. G. Shchukina, I. E. Vasiljeva, and I. Ramírez, “Permitted Oxygen Abundances and the Temperature Scale of Metal-Poor Turn-off Stars,” Astrophys. J. 642, 1082–1097 (2006).
https://doi.org/10.1086/501158

47.D. Mihalas, Stellar Atmospheres, 2nd ed. (W.H. Freeman and Co, San Francisco, 1978).

48.L. A. Milone and A. A. E. Milone, “Log (gf) for Singly-Ionized Elements of the Iron Group,” Astrophys. Space Sci. 107, 303–312 (1984).
https://doi.org/10.1007/BF00653534

49.L. A. Milone and A. A. E. Milone, “Log (gf) for Singly-Ionized Elements of the Iron Group. II,” Astrophys. Space Sci. 115, 61–70 (1985).
https://doi.org/10.1007/BF00653827

50.J. Moity, “Arc Measurements of Fe II Transition Probabilities,” Astron. Astrophys., Suppl. Ser. 52, 37–62 (1983).

51.C. E. Moore, “A Multiplet Table of Astrophysical Interest, Revised Edition. Part I. Table of Multiplets. Part II. Finding List of All Lines in the Table of Multiplets,” Natl. Stand. Ref. Data Ser. (U. S., Natl. Bur. Stand.) 40 (1972).

52.S. N. Nahar, “Atomic Data from the Iron Project. VII. Radiative Dipole Transition Probabilities for Fe II,” Astron. Astrophys. 293, 967–977 (1995).

53.P. E. Nissen, Y. Q. Chen, M. Asplund, and M. Pettini, “Sulphur and Zinc Abundances in Galactic Stars and Damped Lyα Systems,” Astron. Astrophys. 415, 993–1007 (2004).
https://doi.org/10.1051/0004-6361:20034063

54.H. Nussbaumer, M. Pettini, and P. J. Storey, “Sextet Transitions in Fe II,” Astron. Astrophys. 102, 351–358 (1981).

55.H. Nussbaumer and P. J. Storey, “Atomic Data for Fe II,” Astron. Astrophys. 89, 308–313 (1980).

56.U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe II Transition Probabilities and the Solar Iron Abundance,” Astron. Astrophys. 231, 536–542 (1990).

57.M. M. Phillips, “A Compilation of Oscillator Strengths for Selected Fe II Transition,” Astrophys. J., Suppl. Ser. 39, 377–387 (1979).
https://doi.org/10.1086/190577

58.J. C. Pickering, S. Johansson, and P. L. Smith, “The FERRUM Project: Branching Ratios and Atomic Transition Probabilities of Fe II Transitions from the 3d6(a3F)4p Subconfiguration in the Visible to VUV Spectral Region,” Astron. Astrophys. 377, 361–367 (2001).
https://doi.org/10.1051/0004-6361:20010943

59.P. Quinet, M. Le Dourneuf, C. J. Zeippen, “Atomic Data from the IRON Project. XIX. Radiative Transition Probabilities for Forbidden Line in Fe II,” Astron. Astrophys., Suppl. Ser. 120, 361–371 (1996).
https://doi.org/10.1051/aas:1996298

60.A. J. J. Raassen and P. H. M. Uylings, “On the Determination of the Solar Iron Abundance Using Fe II Lines,” Astron. Astrophys. 340, 300–304 (1998).

61.Yu. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2011), “NIST Atomic Spectra Database (ver. 4.1.0)”. http://physics.nist.gov/asd3

62.B. E. Reddy, J. Tomkin, D. L. Lambert, and C. Allende Prieto, “The Chemical Compositions of Galactic Disc F and G Dwarfs,” Mon. Not. R. Astron. Soc 340, 304–340 (2003).
https://doi.org/10.1046/j.1365-8711.2003.06305.x

63.O. Roder, “Messung absoluter Oszillatorenstärken einiger Fe I- und Fe II-Linien,” Z. Astrophys. 55, 38–45 (1962).

64.R. J. Rutten and R. I. Kostik, “Empirical NLTE Analyses of Solar Spectral Lines. III — Iron Lines versus LTE Models of the Photosphere,” Astron. Astrophys. 115, 104–114 (1982).

65.T. A. Ryabchikova, G. M. Hill, J. D. Landstreet, et al., “Astrophysical Determination of Optical Oscillator Strengths for Ti II,” Mon. Not. R. Astron. Soc 267, 697–710 (1994).

66.K. Sadakane, T. Ohnishi, M. Ohkubo, and Y. Takeda, “Metallicities in Four Planet-Harbouring K-Type Giants: HD 47536, HD 59686, HD 137759, and HD 219449,” Publ. Astron. Soc. Jpn. 57, 127–133 (2005).

67.N. C. Santos, G. Israelian, and M. Mayor, “Spectroscopic [Fe/H] for 98 Extra-Solar Planet-Host Stars. Exploring the Probability of Planet Formation,” Astron. Astrophys. 415, 1153–1166 (2004).
https://doi.org/10.1051/0004-6361:20034469

68.I. S. Savanov, “Oscillator Strengths Catalogues for Iron and Titanium Lines,” in Proceedings of the 3rd International Colloquium of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands, 1989), Ed. by J. E. Hansen (North-Holland, Amsterdam, 1990), pp. 165–171.

69.R. Schnabel, M. Kock, and H. Holweger, “Selected Fe II Lifetimes and f-Values Suitable for a Solar Abundance Study,” Astron. Astrophys. 342, 610–613 (1999).

70.R. Schnabel, M. Schultz-Johanning, and M. Kock, “Fe II Lifetimes and Transition Probabilities,” Astron. Astrophys. 414, 1169–1176 (2004).
https://doi.org/10.1051/0004-6361:20031685

71.N. Shchukina and J. Trujillo Bueno, “The Iron Line Formation Problem in Three-Dimensional Hydrodynamic Models of Solar-Like Photospheres,” Astrophys. J. 550, 970–990 (2001).
https://doi.org/10.1086/319789

72.N. Shchukina, J. Trujillo Bueno, and M. Asplund, “The Impact of Non-LTE Effects and Granulation Inhomogeneities on the Derived Iron and Oxygen Abundances in Metal-Poor Halo Stars,” Astrophys. J. 618, 939–952 (2005).
https://doi.org/10.1086/426012

73.J. R. Shi, T. Gehren, K. Butler, L. I. Mashonkina, and G. Zhao, “Statistical Equilibrium of Silicon in the Solar Atmosphere,” Astron. Astrophys. 486, 303–310 (2008).
https://doi.org/10.1051/0004-6361:200809452

74.C. M. Sikström, M. Schultz-Johanning, M. Kock, et al., “The FERRUM Project: Experimental Lifetimes of Highly Excited Fe II 3d64p Levels and Transition Probabilities,” J. Phys. B: At., Mol. Opt. Phys. 32, 5687–5698 (1999).
https://doi.org/10.1088/0953-4075/32/24/306

75.P. L. Smith, “Absolute Oscillator Strengths for the Iron Group: a Correction to the Data of Warner for the Second Spectra and a Comment on Some of the Semiempirical Results of Kurucz and Peytremann,” Mon. Not. R. Astron. Soc. 177, 275–289 (1976).

76.S. G. Sousa, N. C. Santos, G. Israelian, et al., “A New Code for Automatic Determination of Equivalent Widths: Automatic Routine for Line Equivalent Widths in Stellar Spectra (ARES),” Astron. Astrophys. 469, 783–791 (2007).
https://doi.org/10.1051/0004-6361:20077288

77.S. G. Sousa, N. C. Santos, M. Mayor, et al., “Spectroscopic Parameters for 451 Stars in the HARPS GTO Planet Search Program. Stellar [Fe/H] and the Frequency of Exo-Neptunes,” Astron. Astrophys. 487, 373–381 (2008).
https://doi.org/10.1051/0004-6361:200809698

78.C. S. Stalin, K. Sinha, and B. B. Sanwal, “Solar Log gf Values for the Spectral Lines in the Range λλ 6209–6273 Å,” Bull. Astron. Soc. India 25, 117–132 (1997).

79.F. Thevenin, “Oscillator Strengths from the Solar Spectrum,” Astron. Astrophys., Suppl. Ser. 77, 137–154 (1989).

80.F. Thevenin, “Oscillator Strengths from the Solar Spectrum. II,” Astron. Astrophys., Suppl. Ser. 82, 179–188 (1990).

81.A. Unsöld, Physik der Sternatmosphären, 2nd ed. (Springer, Berlin, 1955) [German].
https://doi.org/10.1007/978-3-642-47425-5

82.J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the Solar Chromosphere. II. The Underlying Photosphere and Temperature-Minimum Region,” Astrophys. J., Suppl. Ser. 30, 1–60 (1976).
https://doi.org/10.1086/190356

83.G. M. Wahlgren, “Oscillator Strengths and Their Uncertainties,” EAS Publ. Ser. 43, 91–114 (2010).
https://doi.org/10.1051/eas/1043007

84.B. Warner, “Absolute Oscillator Strengths for Once-Ionized Elements of the Iron Group,” Mem. R. Astron. Soc. 70, 165–253 (1967).

85.S. J. Wolnik, R. O. Berthel, and G. W. Wares, “Measurements of Oscillator Strengths for Fe I and Fe II,” Astrophys. J. 166, L31–L33 (1971).
https://doi.org/10.1086/180733