Multicomponent simulation of emission of low-metallicity H II regions
1Koshmak, IO, 1Melekh, BY 1Ivan Franko National University of Lviv, Lviv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(2):26-47 |
Start Page: Structure and Dynamics of the Galaxy |
Language: Ukrainian |
Abstract: Using multicomponent photoionization simulation, we investigated the impact of bubble-like structures around starbursts inside low-metallicity H II regions on the ionization spectrum shape and on emission line forming. Radial distribution of density values and other physical parameters of bubble-like structures were taken from Weaver et al. [Weaver R. et al. Astrophys. J.—1977.—218.— P. 377]. The first and second inner components of such models describe the free expansion zone of superwind from the central starburst region and rarefied hot gas of the cavity thermalized by inverse shock wave, respectively. The gas density and electron temperature distributions into these components are obtained from the solution of the system of equations of continuity and energy transfer including heat conductivity. The third component is a thin shell of high density gas formed from the gas which surround a bubble by direct shock wind wave. The gas density in this component was obtained from isobaric condition at contact discontinuity between the second and third components. Input spectra of the ionizing radiation were obtained from the starburst evolutional models. The evolution grid of the multicomponent low-metallicity photoionization models with free parameters determining physical conditions inside bubble-like structure was calculated. The impact of bubble-like structure on the ionization spectrum shape and on the formation of fluxes of important emission lines in low-metallicity case was analysed in details. |
Keywords: bubble-like structures, method, starburst |
1.N. G. Bochkarev and S. A. Zhekov, “X-radiation of some nebulae formed by star wind,” Astron. Rep. 67, 274–292 (1990).
2.I. O. Koshmak and B. Ya. Melekh, “Simulation of emission of H II region containing bubble-like structure,” Kinematics Phys. Celestial Bodies 29(6), 3–19 (2013).
https://doi.org/10.3103/S0884591313060020
3.B. Ya. Melekh, “Optimized photoionization simulation of emission of H II region in blue compact dwarf galaxy SBS 0335-052,” Zh. Fiz. Dosl. 11, 353–365 (2007).
4.B. Ya. Melekh, “Two-staged optimized simulation of emission of H II region in blue compact dwarf galaxy 0335-052,” Zh. Fiz. Dosl. 13, 3901-1–3901-16 (2009).
5.B. Ya Melekh, I. O. Koshmak, and R. B. Kozel, “Influence of bubble-like structures formed by star wind on field of ionizing radiation in nebular objects,” Zh. Fiz. Dosl. 15, 3901–3908 (2011).
6.B. Ya. Melekh, L. S. Piliuhin, and R. I. Korytko, “Conformity between intensities of stronf emission lines in specter of H II region and its chemical content,” Kinematics Phys. Celestial Bodies 28(4), 56–75 (2012).
https://doi.org/10.3103/S0884591312040046
7.F. Bresolin, D. Schaerer, R. M. González Delgado, et al., “A VLT study of metal-rich extra galactic H II regions. I. Observations and empirical abundances,” Astron. and Astro Phys. 441, 981–997 (2005).
https://doi.org/10.1051/0004-6361:20053369
8.J. Castor, R. McCray, R. Weaver, et al., “Interstellar bubbles,” Astrophys. J. 200, L107–L110 (1975).
https://doi.org/10.1086/181908
9.K. Davidson, “On photoionization analyses of emission spectra of quasars,” Astrophys. J. 218, 20–32 (1977).
https://doi.org/10.1086/155653
10.J. E. Dyson and D. A. Williams, Physics of the Interstellar Medium (Wiley, New York, 1997).
https://doi.org/10.1887/075030460X
11.G. J. Ferland, “Hazy, a brief introduction to Cloudy”, University of Kentucky, Physics Department Internal Report, 200 (2008), http://www.nublado.org.
12.G. Ferland, L. Binette, M. Contini,et al., The Lexington Benchmarks for Numerical Simulations of Nebulae, Eds. by R. Williams and M. Livio (Space Telescope Science institute Symposium Series, Cambridge, 1995).
13.L. Gutiérrez, J. E. Beckman, “The galaxy-wide distributions of mean electron density in the H II regions of M51 and NGC 4449,” Astrophys. J. 710, 44–48 (2010).
https://doi.org/10.1088/2041-8205/710/1/L44
14.Y. I. Izotov, T. X. Thuah, and V. A. Lipovetsky, “The primordial helium abundance from a new sample of metal deficient blue compact galaxies,” Astrophys. J. 435, 647–667 (1994).
https://doi.org/10.1086/174843
15.B. C. Koo, C. F. McKee, “Dynamics of wind bubbles and superbubbles. I. Slow winds and fast winds. II. Analytic theory,” Astrophys. J. 388, 93–126 (1992).
https://doi.org/10.1086/171132
16.R. V. Kozel, B. Ya. Melekh, “Photoionization modelling of H II region with stellar wind bubble inside,” in YSC’16 Proc. of Contributed Papers, 2009, pp. 37–41.
17.T. Lanz and I. Hubeny, “A grid of non-LTE line-blanketed model atmospheres of O-Type stars,” Astrophys. J. Suppl. Ser. 146, 417–441 (2003).
https://doi.org/10.1086/374373
18.T. Lanz and I. Hubeny, “A Grid of NLTE Line-blanketed model atmospheres of early B-type stars,” Astrophys. J. Suppl. Ser. 169, 83–104 (2007).
https://doi.org/10.1086/511270
19.C. Leitherer, D. Schaerer, J. D. Goaldader, et al., “Starburst 99: Synthesis models for galaxies with active star formation,” Astrophys. J. Suppl. Ser. 123, 3–40 (1999).
https://doi.org/10.1086/313233
20.J. S. Mathis, W. Rumpl, and K. H. Nordsieck, “The size distribution of interstellar grains,” Astrophys. J. 217, 425–433 (1977).
https://doi.org/10.1086/155591
21.G. Mellema, “The interaction of stellar winds with their environment: Theory and modeling,” Astrophys. and Space Sci. 260, 203–213 (1998).
https://doi.org/10.1023/A:1001896920236
22. Proceedings of the Workshop on Model Nebulae held at Observatore de Meudon, July 8–19, 1985, Ed. by D. Pequignot (Observatoire de Paris, Paris, 1986), p. 376.
23.L. S. Pilyugin, J. M. Vílchez, and T. X. Thuan, “New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions,” Astrophys. J. 720, 1738–1751 (2010).
https://doi.org/10.1088/0004-637X/720/2/1738
24.T. X. Thuah and Y. I. Izotov, “High-ionization emission in metal-deficient blue compact dwarf galaxies,” Astrophys. J. 161, 240–270 (2005).
https://doi.org/10.1086/491657
25.J. P. Vallee, “Interstellar magnetic bubbles,” Astrophys. J. 419, 670–673 (1993).
https://doi.org/10.1086/173517
26.R. Weave, R. McCra, J. Castor, et al., “Interstellar bubbles. II. Structure and evolution,” Astrophys. J. 218, 377–395 (1977).
https://doi.org/10.1086/155692
27.D. Zaritsky, R. C. Kennicutt, and J. P. Huchra, “H II regions and the abundance properties of spiral galaxies,” Astrophys. J. 420, 87–109 (1994).
https://doi.org/10.1086/173544