Spatial variations of Stokes profiles of magnetoactive Fe I lines

Heading: 
1Stodilka, MI
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(6):3-13
Start Page: Solar Physics
Language: Russian
Abstract: 

We obtained solutions for polarized radiative transfer problem within 3D MHD model of the quiet solar atmosphere and studied spatial variations of Stokes profile parameters which are caused by granulation structure and small-scale magnetic fields in the quiet solar photosphere for neutral iron magnetoactive lines. We revealed an effect of Stokes V-profile parameter (amplitude, area) modulation by granulation structure of the solar photosphere. The effect is more significant in intergranules where the modulation depth reaches 50 %. We also investigated correlation of Stokes profile parameters with small-scale magnetic fields of the solar granulation. It was shown that using Stokes profile parameters of Fe I lines λ 525.02 nm and λ 524.71 nm one can construct calibration relationships that provide high correlation coefficient (≈ 0.98) when studing small-scale magnetic fields.

Keywords: atmosphere, Sun
References: 

1.J. W. Harvey, D. Branston, C. J. Henney, et al., “Seething horizontal magnetic fields in the quiet solar photosphere,” Astrophys. J., Lett. 659, L177–L180 (2007).
https://doi.org/10.1086/518036

2.E. Khomenko and M. Collados, “On the Stokes V amplitude ratio as an indicator of the field strength in the solar internetwork,” Astrophys. J. 659, 1726–1735 (2007).
https://doi.org/10.1086/512098

3.R. I. Kostyk and N. G. Shchukina, “Fine structure of convective motions in the solar photosphere Observations and theory Astro,” Astron. Rep. 48, 769–780 (2004).
https://doi.org/10.1134/1.1800177

4.E. Landi Degl’Innocenti, “MALIP-a programme to calculate the Stokes parameters profiles of magnetoactive Fraunhofer lines,” Astron. Astrophys., Suppl. Ser. 25, 379–390 (1976).

5.E. Landi Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Kluwer Academic Publisher, Dordrecht, 2004), vol. 307.
https://doi.org/10.1007/1-4020-2415-0

6.V. M. Pillet, “Solar surface and atmospheric dynamics. The photosphere,” Space Sci. Rev. 178, 141–162 (2013).
https://doi.org/10.1007/s11214-013-9967-8

7.D. O. Suarez, L.R. Bellot Rubio, A. Vogler, and J. C. del Toro Iniesta, “Applicability of Milne-Eddington inversions to high spatial resolution observations of the quiet Sun,” Astron. Astrophys. 518, (2010).

8.D. E. Rees, C. J. Durrant, and G. A. Murphy, “Stokes profile analysis and vector magnetic fields. II. Formal numerical solutions of the Stokes transfer equations,” Astrophys. J. 339, 1093–1106 (1989).
https://doi.org/10.1086/167364

9.B. Ruiz Cobo and J. C. del Toro Iniesta, “Inversion of Stokes profiles,” Astrophys. J. 398, 375–385 (1992).
https://doi.org/10.1086/171862

10.H. Socas-Navarro, J. Trujillo-Bueno, and B. Ruiz Cobo, “Non-LTE inversion of Stokes profiles induced by the Zeeman effect,” Astrophys. J. 530, 977–993 (2000).
https://doi.org/10.1086/308414

11.R. F. Stein, “Solar surface magneto-convection,” Living Rev. Solar Phys. 9, 1–51 (2012).
https://doi.org/10.12942/lrsp-2012-4

12.R. Stein, A. Lagerfjard, A. Nordlund, et al., “Solar magneto-convection simulations,” Bull. Am. Astron. Soc. 41, 810–826 (2009).

13.J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Solar Phys. 32, 41–63 (1973).
https://doi.org/10.1007/BF00152728

14.J. O. Stenflo, “The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere,” Solar Phys. 80, 209–226 (1982).
https://doi.org/10.1007/BF00147969

15.J. O. Stenflo, “Basal magnetic flux and the local solar dynamo,” Astron. Astrophys. 547, 1–11 (2012).
https://doi.org/10.1051/0004-6361/201219833

16.J. Trujillo-Bueno, N. Shchukina, and A. A. Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
https://doi.org/10.1038/nature02669

17.A. Vogler and M. A. Schussler, “Solar surface dynamo,” Astron. Astrophys. 465, L43–L46 (2007).
https://doi.org/10.1051/0004-6361:20077253