Spectropolarimetric investigation of Ellerman bomb. I. Observations

Heading: 
1Kondrashova, NN
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(1):21-32
Start Page: Solar Physics
Language: Russian
Abstract: 

The data of the spectropolarimetric observations of the Ellerman bomb in the active region NOAA 11024 with the French-Italian solar telescope THEMIS (Tenerife, Spain) are used for the analysis of the variations of the Stokes profiles I, Q, U, V of the photospheric lines. The photospheric lines under consideration have different intensities and Lande factors. The photospheric line profiles in the Ellerman bomb spectra differ from the profiles for the quiet photosphere. Stokes profiles I of the photospheric lines in the Ellerman bomb spectra are weaker strongly. Largest values of the Stokes parameters Q, U, V are found for the magnetic sensitive line Fe I λ 630.25 nm. Stokes parameter V is highest in the central region of the Ellerman bomb. Largest values of the parameters Q and U are at one of the edges of the Ellerman bomb. Comparison of the Stokes Q, U, V parameters for the Ellerman bomb and microflares shows that the parameters for the Ellerman bomb are much greater.

Keywords: Ellerman bomb, Stokes parameters, Sun
References: 

1.A. B. Severnyi, “Some results of the research of nonstationary processes on Sun,” Astron. Zh. 34, 684–693 (1957).

2.E. Andriets and N. N. Kondrashova, “Semiempirical photospheric models of a solar flare on May 28, 2012,” Adv. Space Res. 55, 871–878 (2015).
https://doi.org/10.1016/j.asr.2014.07.026

3.V. Archontis and A. W. Hood, “Formation of Ellerman bombs due to 3D flux emergence,” Aston. Astrophys. 508, 1469–1483 (2009).
https://doi.org/10.1051/0004-6361/200912455

4.J. M. Beckers, “A table of Zeeman multiplets,” Phys. Sci. Res. Papers, No. 371 (1969).

5.L. Delbouille, G. Roland, and L. Neven, Photometric Atlas of the Solar Spectrum from γ 3000 to γ 10000 (Inst. d’Astrophys., Liege, 1973).

6.M. D. Ding, J.-C. Henoux, and C. Fang, “Line profiles in moustaches produced by an impacting energetic particle beam,” Astron. Astrophys. 332, 761–766 (1998).

7.F. Ellerman, “Solar hydrogen “bombs”,” Astrophys. J. 46, 298–300 (1917).
https://doi.org/10.1086/142366

8.J. Hong, M. D. Ding, Y. Li, et al., “Spectral observations of Ellerman bombs band fitting with a two-cloud model,” Astrophys. J. 792, 10 (2014).
https://doi.org/10.1088/0004-637X/792/1/13

9.L. K. Kashapova, “A spectropolarimetric study of Ellerman bombs,” Astron. Rep. 46, 918–924 (2002).
https://doi.org/10.1134/1.1522080

10.N. N. Kondrashova, “Spectropolarimetric investigation of the photosphere during a solar microflare,” Mon. Not. R. Astron. Soc. 431, 1417–1424 (2013).
https://doi.org/10.1093/mnras/stt266

11.N. N. Kondrashova, M. N. Pasechnik, S. N. Chornogor, and E. V. Khomenko, “Atmosphere dynamics of the active region NOAA 11024,” Sol. Phys. 284, 499–513 (2013).
https://doi.org/10.1007/s11207-012-0212-5

12.A. N. Koval and A. B. Severny, “On the asymmetry of moustaches,” Sol. Phys. 11, 276–284 (1970).
https://doi.org/10.1007/BF00155226

13.H. Kurokawa, I. Kawaguchi, Y. Funakoshi, and Y. Nakai, “Morphological and evolutional features of Ellerman bombs,” Sol. Phys. 79, 77–84 (1982).
https://doi.org/10.1007/BF00146974

14.A. Lopez Ariste, J. Rayrole, and M. Semel, “First results from THEMIS spectropolarimetric mode,” Astron. Astrophys. Suppl. 142, 137–148 (2000).
https://doi.org/10.1051/aas%3A2000144

15.T. Matsumoto, R. Kitai, K. Shibata, et al., “Cooperative observation of Ellerman bombs between the Solar Optical Telescope aboard Hinode and Hida/Domless Solar Telescope,” Publ. Astron. Soc. Japan. 60, 577–584 (2008).
https://doi.org/10.1093/pasj/60.3.577

16.C. J. Nelson, S. Shelyag, M. Mathioudakis, et al., “Ellerman bombs–evidence for magnetic reconnection in the lower solar atmosphere,” Astrophys. J. 779, article id. 125 (2013).
https://doi.org/10.1088/0004-637X/779/2/125

17.A. Nindos and H. Zirin, “Properties and motions of Ellerman bombs,” Sol. Phys. 182, 381–392 (1998).
https://doi.org/10.1023/A%3A1005041920869

18.E. Pariat, G. Aulanier, B. Schmieder, et al., “Resistive emergence of undulatory flux tubes,” Astrophys. J. 614, 1099–1112 (2004).
https://doi.org/10.1086/423891

19.E. Pariat, B. Schmieder, A. Berlicki, et al., “Spectrophotometric analysis of Ellerman bombs in the Ca II, Ha, and UV range,” Astron. Astrophys. 473, 279–289 (2007).
https://doi.org/10.1051/0004-6361%3A20067011

20.A. K. Pierce and J. B. Breckinridge, “The Kitt Peak table of photographic solar spectrum wavelengths,” Contrib. Kitt Peak Nat. Obs., No. 559 (1972).

21.J. Qiu, M. D. Ding, H. Wang, et al., “Ultraviolet and Ha emission in Ellerman bombs,” Astrophys. J. Lett. 544, L157–L161 (2000).
https://doi.org/10.1086/317310

22.R. J. Rutten, G. J. M. Vissers, L. H. M. Rouppe van der Voort, et al., “Ellerman bombs: fallacies, fads, usage,” J. Phys.: Conf. Ser. 440, article id. 012007 (2013).

23.P. H. Scherrer, R. S. Bogart, R. I. Bush, et al., “The solar oscillations investigation–Michelson Doppler Imager,” Sol. Phys. 162, 129–188 (1995).
https://doi.org/10.1007/BF00733429

24.A. B. Severny, “Fine structure in solar spectra,” Observatory 56, 241–242 (1956).

25.G. Valori, L. M. Green, P. Demoulin, et al., “Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures,” Sol. Phys. 278, 73–97 (2012).
https://doi.org/10.1007/s11207-011-9865-8

26.G. J. M. Vissers, L. H. M. Rouppe van der Voort, and R. J. Rutten, “Ellerman bombs at high resolution. II. Triggering, visibility and effect on upper atmosphere,” Astrophys. J. 774, article id. 32 (2013).
https://doi.org/10.1088/0004-637X/774/1/32

27.H. Watanabe, R. Kitai, K. Okamoto, et al., “Spectropolarimetric observation of an emerging flux region: triggering mechanisms of Ellerman bombs,” Astrophys. J. 684, 736–746 (2008).
https://doi.org/10.1086/590234

28.H. Watanabe, G. Vissers, R. Kitai, et al., “Ellerman bombs at high resolution. I. Morphological evidence for photospheric reconnection,” Astrophys. J. 736 article id. 71 (2011).
https://doi.org/10.1088/0004-637X/736/1/71

29.X.-Y. Xu, C. Fang, M. D. Ding, and D.-H. Gao, “Numerical simulations of magnetic reconnection in the lower solar atmosphere,” Res. Astron. Astrophys. 11, 225–236 (2011).
https://doi.org/10.1088/1674-4527/11/2/010