Excitation of Alfven turbulence in solar wind ahead the Earth bow shock
1Malovichko, PP 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(2):48-73 |
Start Page: Space Physics |
Language: Russian |
Abstract: One of Alfven turbulence generation mechanism is investigated in foreshock region by the example of Earth bow shock. The fast speed beam temperature influence on generated perturbation characteristics was studied. It is shown, that beam temperature exerts essential influence on transverse scales of disturbances. The higher temperature the stronger limitations impose on transversal length of waves. The development of instability of reflected, intermediate and diffuse protons beams, which propagates in foreshock region of Earth bow shock, is considered. Perturbations motion dynamics is analyzed in the foreshock region. |
Keywords: Alfven turbulence, Earth bow shock, protons fast speed beams |
1.A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).
https://doi.org/10.1007/978-3-642-69247-5
2.Yu. M. Voitenko, A. N. Krishtal’, S. V. Kuts, et al., “Generation of kinetic Alfvén waves in the transitional region of solar wind,” Geomagn. Aeron. 30, 901–907 (1990).
3.Yu. M. Voitenko, A. Krishtal’, P. P. Malovichko, et al., “Current instability and generation of kinetic Alfvén waves in the Earth’s magnetosphere,” Geomagn. Aeron. 30, 402–406 (1990).
4.Yu. M. Voitenko, A. N. Krishtal’, P. P. Malovichko, et al., “Generation of kinetic Alfvén waves and their role in coronal loops heating,” Kinematika Fiz. Nebesnykh Tel 6, 61–65 (1990).
5.N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973; Mir, Moscow, 1975).
6.P. P. Malovichko, A. N. Krishtal’, and A. K. Yukhimuk, “Influence of temperature inhomogeneities on the kinetic Alfvén waves generation in the Earth’s magnetosphere,” Kinematika Fiz. Nebesnykh Tel 22, 58–64 (2006).
7.P. P. Malovichko and A. K. Yukhimuk, “Current instability and Alfvén waves in coronal loops,” Kinematika Fiz. Nebesnykh Tel 8, 20–23 (1992).
8.P. P. Malovichko and A. K. Yukhimchuk, “Current instability and generation of Alfvén waves in the Earth’s magnetosphere,” Geomagn. Aeron. 32, 163–167 (1992).
9.D. Berdichevsky, G. Thejappa, R. J. Fitzenreiter, et al., “Widely spaced wave-particle observations during GEOTAIL and Wind magnetic conjunctions in the Earth’s ion foreshock with near-radial interplanetary magnetic field,” J. Geophys. Res.: Space Phys. 104, 463–482 (1999).
https://doi.org/10.1029/1998JA900018
10.D. Burgess, E. Möbius, and M. Scholer, “Ion acceleration at the Earth’s bow shock,” Space Sci. Rev. 173, 5–47 (2012).
https://doi.org/10.1007/s11214-012-9901-5
11.J. B. Cao, H. S. Fu, T. L. Zhang, et al., “Direct evidence of solar wind deceleration in the foreshock of the Earth,” J. Geophys. Res.: Space Phys. 114, A02207 (2009).
12.S. P. Gary, “Electromagnetic ion/ion instabilities and their consequences in space plasmas: a review,” Space Sci. Rev. 56, 373–415 (1991).
https://doi.org/10.1007/BF00196632
13.N. F. Cramer, The Physics of Alfvén Waves (Wiley, Berlin, 2001).
https://doi.org/10.1002/3527603123
14.Y. Hobara, S. N. Walker, M. Balikhin, et al., “Characteristics of terrestrial foreshock ULF waves: Cluster observations,” J. Geophys. Res.: Space Phys. 112, A07202 (2007).
https://doi.org/10.1029/2006JA012142
15.E. A. Kronberg, R. Bu ík, S. Haaland, et al., “On the origin of the energetic ion events measured upstream of the Earth’s bow shock by STEREO, Cluster, and Geotail,” J. Geophys. Res.: Space Phys. 116, A02210 (2011).
16.P. P. Malovichko, “Correlation of longitudinal currents with Alfvén wave generation in the solar atmosphere,” Kinematics Phys. Celestial Bodies 23, 185–190 (2007).
https://doi.org/10.3103/S0884591307050017
17.P. P. Malovichko, “Stability of magnetic configurations in the solar atmosphere under temperature anisotropy conditions,” Kinematics Phys. Celestial Bodies 24, 236–241 (2008).
https://doi.org/10.3103/S0884591308050024
18.P. P. Malovichko, “Generation of low-frequency magnetic field disturbances in coronal loops by proton and electron beams,” Kinematics Phys. Celestial Bodies 26, 62–70 (2010).
https://doi.org/10.3103/S0884591310020030
19.P. P. Malovichko, “Properties of dispersive Alfvén waves: 1. Kinetics (very low, intermediate, and low density plasmas),” Kinematics Phys. Celestial Bodies 29, 269–284 (2013).
https://doi.org/10.3103/S0884591313060044
20.P. P. Malovichko, “Properties of dispersive Alfvén waves: 2. Kinetics (finite and high density plasmas),” Kinematics Phys. Celestial Bodies 30, 22–31 (2014).
https://doi.org/10.3103/S088459131401005X
21.P. P. Malovichko, “Properties of dispersive Alfvén waves: 3. Hydrodynamics (very low, intermediate, and low density plasmas),” Kinematics Phys. Celestial Bodies 30, 196–209 (2014).
22.P. P. Malovichko, “Properties of dispersive Alfvén waves: 4. Hydrodynamics (finite and high-pressure plasmas),” Kinematics Phys. Celestial Bodies 30, 223–233 (2014).
https://doi.org/10.3103/S0884591314050067
23.P. Malovichko, Y. Voitenko, and J. De Keyser, “Oblique Alfvén instabilities driven by compensated currents,” Astrophys. J. 780, 175 (2014).
https://doi.org/10.1088/0004-637X/780/2/175
24.P. Malovichko, Y. Voitenko, and J. De Keyser, “Compensated-current instability of kinetic Alfvén waves,” Mon. Not. R. Astron. Soc. 452, 4236–4246 (2015).
https://doi.org/10.1093/mnras/stv1533
25.K. Meziane, M. Wilber, A. M. Hamza, et al., “Evidence for a high-energy tail associated with foreshock fieldaligned beams,” J. Geophys. Res.: Space Phys. 112, A01101 (2007).
https://doi.org/10.1029/2006JA011751
26.Y. Narita, K.-H. Glassmeier, K.-H. Fornacon, et al., “Low-frequency wave characteristics in the upstream and downstream regime of the terrestrial bow shock,” J. Geophys. Res.: Space Phys. 111, A01203 (2006).
https://doi.org/10.1029/2005JA011231
27.G. Paschmann, N. Sckopke, I. Papamastorakis, et al., “Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock,” J. Geophys. Res.: Space Phys. 86, 4355–4364 (1981).
https://doi.org/10.1029/JA086iA06p04355
28.B. T. Tsurutani and P. Rodriguez, “Upstream waves and particles: An overview of ISEE results,” J. Geophys. Res.: Space Phys. 86, 4317–4324 (1981).
https://doi.org/10.1029/JA086iA06p04317