Ballistic and diffusive components of the dynamic spectra of ultra high energy cosmic rays from nearby transient sources
1Fedorov, YI, 2Gnatyk, RB, 2Hnatyk, BI, Kolesnyk, YI, 1Shakhov, BA, 2Zhdanov, VI 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(3):3-25 |
Start Page: Space Physics |
Language: Russian |
Abstract: Ultra high energy cosmic rays (UHECR, E > 1018 eV) from extragalactic sources deviate in the Galactic and intergalactic magnetic fields that lead to the diffusive character of their propagation, isotropization of their total flux and to the absence of clus-ers of UHECRs, associated with the individual sources.Extremely high energy cosmic rays (E > 1019.7 eV) are scattered mainly on localized magnetized structures: galaxy clusters, filaments, etc. with a mean free path of tens of Mpc, therefore, in the case of close transient sources the significant contribution of unscattered and weakly scattered particles to the observed flux is expected, that could be the determining factor in the identification of such sources. We propose a method for calcu-ating the time evovution of the UHECR energy spectra based on analytical solutions of the transport equation with explicit determination of contribution of scattered and unscattered particles. As examples, we consider the transient activity of the closest active galactic nucleus Centaurus A and acceleration of UHECRs by young millisecond pulsar. |
Keywords: evolution of the energy spectra, transient sources, Ultra high energy cosmic rays |
1.V. S. Berezinskii, S. V. Bulanov, V. L. Ginzburg, et al., Astrophysics of Cosmic Rays (Nauka, Moscow, 1984; North-Holland, Amsterdam, 1990).
2.V.S. Beskin, “Magnetohydrodynamic models of astrophysical jets,” Phys.-Usp. 53, 1199–1233 (2010).
https://doi.org/10.3367/UFNe.0180.201012b.1241
3.L. I. Dorman and L. I. Miroshnichenko, Solar Cosmic Rays (Nauka, Moscow, 1968; NASA, Washington, DC, 1976).
4.I. N. Toptygin, Cosmic Rays in Interstellar Magnetic Fields (Nauka, Moscow, 1983) [in Russian].
5.Yu. I. Fedorov, “The spread of solar cosmic rays in the interplanetary medium in the approximation of a radial regular magnetic field,” Geomagn. Aeron. 39 (3), 16–23 (1999).
6.Yu. I. Fedorov, “A kinetic consideration of dynamics of solar cosmic ray energetic spectra,” Kinematika Fiz. Nebesnykh Tel 19, 307–327 (2003).
7.B. A. Shakhov, “Nonstationary Green function of the transport kinetic equation for an isotropic source,” Kinematika Fiz. Nebesnykh Tel 11 (1), 49–67 (1995).MathSciNet
8.B. A. Shakhov, M. B. Shakhova, and M. P. Titov, “The Green function of transport kinetic equation for impulsive point monodirectional source,” Kinematika Fiz. Nebesnykh Tel 12 (5), 63–70 (1996).
9.A. Aab, P. Abreu, M. Aglietta, et al., “Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory,” Astrophys. J. 804, 15 (2015).
https://doi.org/10.1088/0004-637X/804/1/15
10.A. Aab, P. Abreu, M. Aglietta, et al., “Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array,” Astrophys. J. 794, 172 (2014).
https://doi.org/10.1088/0004-637X/794/2/172
11.R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al., “Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the northern sky measured with the surface detector of the Telescope Array experiment,” Astrophys. J., Lett. 790, L21 (2014).
https://doi.org/10.1088/2041-8205/790/2/L21
12.D. Allard, “Extragalactic propagation of ultrahigh energy cosmic-rays,” Astropart. Phys. 39–40, 33–43 (2012).
https://doi.org/10.1016/j.astropartphys.2011.10.011
13.R. Aloisio, V. Berezinsky, P. Blasi, et al., “A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays,” Astropart. Phys. 27, 76–91 (2007).
https://doi.org/10.1016/j.astropartphys.2006.09.004
14.R. Aloisio, V. Berezinsky, and P. Blasi, “Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition,” J. Cosmol. Astropart. Phys., No. 10, 020 (2014).
https://doi.org/10.1088/1475-7516/2014/10/020
15.R. Aloisio, V. Berezinsky, and A. Gazizov, “The problem of superluminal diffusion of relativistic particles and its phenomenological solution,” Astrophys. J. 693, 1275–1282 (2009).
https://doi.org/10.1088/0004-637X/693/2/1275
16.R. A. Batista and G. Sigl, “Diffusion of cosmic rays at EeV energies in inhomogeneous extragalactic magnetic fields,” J. Cosmol. Astropart. Phys., No. 11, 031 (2014).
https://doi.org/10.1088/1475-7516/2014/11/031
17.J. W. Cronin, “The highest-energy cosmic rays,” Nucl. Phys. B 138, 265–491 (2005).
18.R. Durrer and A. Neronov, “Cosmological magnetic fields: their generation, evolution and observation,” Astron. Astrophys. Rev. 21, 62 (2013).
https://doi.org/10.1007/s00159-013-0062-7
19.K. Fang, K. Kotera, K. Murase, et al., “Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 90, 103005 (2014).
https://doi.org/10.1103/PhysRevD.90.103005
20.G. R. Farrar and A. Gruzinov, “Giant AGN flares and cosmic ray bursts,” Astrophys. J. 693, 329–332 (2009).
https://doi.org/10.1088/0004-637X/693/1/329
21.G. R. Farrar and T. Piran, “Tidal disruption jets as the source of ultra-high energy cosmic rays,” Astrophys. J. (2014).
22.Yu. I. Fedorov and B. A. Shakhov, “Solar cosmic rays in homogeneous regular magnetic field,” in Proc. 23rd Int. Cosmic Ray Conf., Calgary, Canada, July 19–30, 1993 (Int. Union of Pure and Applied Physics, Calgary, 1993), Vol. 3, p. 215.
23.Yu. I. Fedorov, B. A. Shakhov, and M. Stehlik, “Non-diffusive transport of cosmic rays in homogeneous regular magnetic fields,” Astron. Astrophys. 302, 623–634 (1995).
24.M. Fukushima, “Recent results from Telescope Array,” Astron. Astrophys. (2015).
25.L. J. Gleeson and W. I. Axford, “Solar modulation of galactic cosmic rays,” Astrophys. J. 149, L115–L118 (1967).
https://doi.org/10.1086/180070
26.R. B. Gnatyk, “Search for the sources of the cosmic rays with energies above 1020 eV,” Kinematics Phys. Celestial Bodies 32, 1–12 (2016).
https://doi.org/10.3103/S0884591316010037
27.F. Halzen, R. A. Vázquez, T. Stanev, et al., “The highest energy cosmic ray,” Astropart. Phys. 3 (2), 151–156 (1995).
https://doi.org/10.1016/0927-6505(94)00038-5
28.R. Jansson and G. R. Farrar, “The galactic magnetic field,” Astrophys. J., Lett. 761, L11 (2012).
https://doi.org/10.1088/2041-8205/761/1/L11
29.R. Jansson and G. R. Farrar, “A new model of the Galactic magnetic field,” Astrophys. J. 757, 14 (2012).
https://doi.org/10.1088/0004-637X/757/1/14
30.A. Keivani, G. R. Farrar, and M. Sutherland, “Magnetic deflections of ultra-high energy cosmic rays from Centaurus A,” Astropart. Phys. 61, 47–55 (2015).
https://doi.org/10.1016/j.astropartphys.2014.07.001
31.J. Kota, “Coherent pulses in the diffusive transport of charged particles,” Astrophys. J. 427, 1035–1041 (1994).
https://doi.org/10.1086/174209
32.K. Kotera and M. Lemoine, “Optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 123003 (2008).
https://doi.org/10.1103/PhysRevD.77.123003
33.K. Kotera and A. V. Olinto, “The astrophysics of ultrahigh energy cosmic rays,” Annu. Rev. Astron. Astrophys. 49, 119–153 (2011).
https://doi.org/10.1146/annurev-astro-081710-102620
34.D. Kuempel, “Extragalactic propagation of ultra-high energy cosmic rays,” Annu. Rev. Astron. (2014).
35.M. Lemoine, K. Kotera, and J. Pétri, “On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds,” J. Cosmol. Astropart. Phys., No. 7, 016 (2015); Annu. Rev. Astron. (2015).
https://doi.org/10.1088/1475-7516/2015/07/016
36.M. Malkov and R. Sagdeev, “Cosmic ray transport with magnetic focusing and the “Telegraph” model,” Astrophys. J. 808, 157 (2015).
https://doi.org/10.1088/0004-637X/808/2/157
37.R. N. Manchester, G. B. Hobbs, A. Teoh, et al., “The Australia Telescope National Facility Pulsar Catalogue,” Astron. J. 129, 1993–2006 (2005).
https://doi.org/10.1086/428488
38.I. V. Moskalenko, L. Stawarz, T. A. Porter, et al., “On the possible association of ultra high energy cosmic rays with nearby active galaxies,” Astrophys. J. 693, 1261–1274 (2009).
https://doi.org/10.1088/0004-637X/693/2/1261
39.S. A. Olausen and V. M. Kaspi, “The McGill magnetar catalog,” Astrophys. J., Suppl. Ser. 212, 6 (2014).
https://doi.org/10.1088/0067-0049/212/1/6
40.A. Y. Prosekin, S. R. Kelner, and F. A. Aharonian, “On transition of propagation of relativistic particles from the ballistic to the diffusion regime,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 92, 083003 (2015); Astron. Astrophys. (2015).
https://doi.org/10.1103/PhysRevD.92.083003
41.F. M. Rieger and F. A. Aharonian, “Cen A as TeV gamma-ray and possible UHE cosmic-ray source,” Astron. Astrophys. 506, L41–L44 (2009).
https://doi.org/10.1051/0004-6361/200912562
42.D. Ruffolo, “Effect of adiabatic deceleration on the focused transport of solar cosmic rays,” Astrophys. J. 442, 861–874 (1995).
https://doi.org/10.1086/175489
43.R. Schlickeiser, Cosmic Ray Astrophysics (Springer-Verlag, Berlin, 2002).
https://doi.org/10.1007/978-3-662-04814-6
44.B. A. Shakhov and M. Stehlik, “Exact kinetic transport equation solutions in the particle propagation theory in the scattering medium,” J. Quant. Spectrosc. Radiat. Transfer 109, 1667–1694 (2008).
https://doi.org/10.1016/j.jqsrt.2008.01.012
45.P. Sokolsky, “Recent results from TA,” in Report on Workshop “Multimessenger Astronomy in the Era of PeV Neutrinos,” Annapolis, Maryland, Nov. 10–12, 2014 (Joint Space-Science Institute, College Park, Maryland, 2014).
46.H. Takami, K. Murase, and C. D. Dermer, “Isotropy constraints on powerful sources of ultrahigh-energy cosmic rays at 1019 eV,” JETP Lett. (2014).
47.S. V. Troitsky, “Doublet of cosmic-ray events with primary energies > 1020 eV,” JETP Lett. 96, 13–16 (2012).
https://doi.org/10.1134/S0021364012130115