Diagnostics of horizontal velocities field in the solar atmosphere: line Ba II λ 455.403 nm

Heading: 
1Stodilka, MI
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(3):63-74
Start Page: Solar Physics
Language: Russian
Abstract: 

We proposed the method for diagnostics of the horizontal velocities field based on 2D observations at the center of the solar disk with high spatial and temporal resolution. The method consists in semiempirical modeling of the solar atmosphere by solving inverse radiative transfer problem and subsequent receiving horizontal velocities by solution of the corresponding hydrodynamics equations. We investigated the diagnostic possibilities of the line Ba II λ 455.403 нм (considering hyperfine structure and isotope splitting) for studing horizontal velocity field of the solar atmosphere.

Keywords: horizontal velocities field, solar atmosphere, the line Ba II
References: 

1.L. A. Vainshtein, I. I. Sobel’man, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, in Ser. Springer Series in Chemical Physics, Vol. 7 (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1981).

2.A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971).

3.M. I. Stodilka, “Tikhonov stabilizers in inverse problems of spectral studies,” Kinematika Fiz. Nebesnykh Tel 19, 334–343 (2003).

4.M. I. Stodilka, “The inverse problem for a study of solar and stellar atmosphere inhomogeneities,” Zh. Fiz. Dosl. 6, 435–442 (2002).

5.M. Asplund, H. G. Ludwig, A. Nordlund, and R. F. Stein, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation,” Astron. Astrophys. 359, 669–681 (2000).

6.A. Burgess and M. J. Seaton, “A general formula for the calculation of atomic photoionization cross-sections,” Mon. Not. R. Astron. Soc. 120, 121–151 (1960).MathSciNet
https://doi.org/10.1093/mnras/120.2.121

7.F. Cattaneo, N. E. Hurlburt, and J. Toomre, “Supersonic convection,” Astrophys. J., Lett. 349, L63–L66 (1990).
https://doi.org/10.1086/185652

8.F. Cattaneo, D. Lenz, and N. Weiss, “On the origin of the solar mesogranulation,” Astrophys. J., Lett. 563, L91–L94 (2001).
https://doi.org/10.1086/338355

9.M. C. M. Cheung, M. Schüssler, and F. Moreno-Insertis, “Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures,” Astron. Astrophys. 467, 703–719 (2007).
https://doi.org/10.1051/0004-6361:20077048

10.L. Gizon, R. Cameron, J. Jackiewicz, et al., “Helioseismology at MPS,” in Modern Solar Facilities–Advanced Solar Science: Proc. Workshop Held at Göttingen, Sept. 27–29, 2006, Ed. by F. Kneer, K. G. Puschmann, and A. D. Wittmann, (Univ. Göttingen, Göttingen, 2007), pp. 89–102.

11.J. A. Leese, C. S. Novak, and B. B. Clark, “An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation,” J. Appl. Meteorol. 10, 118–132 (1971).
https://doi.org/10.1175/1520-0450(1971)010<0118:AATFOC>2.0.CO%3B2

12.A. Malagoli, F. Cattaneo, and N. H. Brummell, “Turbulent supersonic convection in three dimensions,” Astrophys. J., Lett. 361, L33–L36 (1990).
https://doi.org/10.1086/185820

13.L. J. November and G. W. Simon, “Precise proper-motion measurement of solar granulation,” Astrophys. J. 333, 427–442 (1988).
https://doi.org/10.1086/166758

14.V. L. Ol’shevskii, N. G. Shchukina, and I. E. Vasil’eva, “NLTE formation of the resonance Ba II line 455.4 nm in the solar atmosphere,” Kinematics Phys. Celestial Bodies 24, 145–158 (2008).
https://doi.org/10.3103/S0884591308030033

15.G. Peach, “A revised general formula for the calculation of atomic photoionization cross sections,” Mon. Not. R. Astron. Soc. 71, 13–27 (1967).

16.S. R. O. Ploner, S. K. Solanki, and A. S. Gadun, “Is solar mesogranulation a surface phenomenon?” Astron. Astrophys. 356, 1050–1054 (2000).

17.M. Rieutord, T. Roudier, H.-G. Ludwig, et al., “Are granules good tracers of solar surface velocity fields?” Astron. Astrophys. 377, L14–L17 (2001).
https://doi.org/10.1051/0004-6361:20011160

18.M. Rieutord, T. Roudier, J. M. Malherbe, and F. Rincon, “On mesogranulation, network formation and supergranulation,” Astron. Astrophys. 357, 1063–1072 (2000).

19.T. Roudier, F. Lignieres, M. Rieutord, et al., “Families of fragmenting granules and their relation to meso-and supergranular flow fields,” Astron. Astrophys. 409, 299–308 (2003).
https://doi.org/10.1051/0004-6361:20030988

20.N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å Line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).
https://doi.org/10.1051/0004-6361/200912048

21.G. W. Simon, A. M. Title, and N. O. Weiss, “Modeling mesogranules and exploders on the solar surface,” Astrophys. J. 575, 775–788 (1991).
https://doi.org/10.1086/170242

22.R. F. Stein and A. Nordlund, “Simulations of solar granulation. I. General properties,” Astrophys. J. 499, 914–933 (1998).
https://doi.org/10.1086/305678

23.L. H. Strous, “Feature tracking: deriving horizontal motion and more,” in Proc. 4th SOHO Workshop on Helioseismology, Pacific Grove, CA, Apr. 2–6, 1995, Ed. by B. Battrick, (ESA, Noordwijk, 1995), Vol. 2, pp. 213–217.

24.M. Verma, M. Steffen, and C. Denker, “Evaluating local correlation tracking using CO5BOLD simulations of solar granulation,” Astron. Astrophys. 555, A136 (2013).
https://doi.org/10.1051/0004-6361/201321628

25.N. Vitas, C. E. Fischer, A. Vögler, and C. U. Keller, “Fast horizontal flows in a quiet Sun MHD simulation and their spectroscopic signatures,” Astron. Astrophys. 532, A110 (2011).
https://doi.org/10.1051/0004-6361/201015773