Dual chromospheric flows in the surroundings of a solar pore

Heading: 
1Leiko, UM, 2Kondrashova, NN
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(3):25-40
https://doi.org/10.15407/kfnt2017.03.025
Start Page: Solar Physics
Language: Russian
Abstract: 

Chromospheric line-of-sight velocities in a small solar pore and its surroundings in a region of size 5" are studied. The spectropolarimetric observations were carried out with the French-Italian THEMIS telescope of the Instituto de Astrofisica de Canarias (Spaine, Tenerife). We use Hα-spectra of the active region NOAA 11024 and the spectrum of the quiet region for a comparison. Strong variations of line-of-sight velocity are revealed. At the beginning of the observations there were flows of different direction in two areas of the region under consideration. The first area included a bright point in the vicinity of the pore, and the second region covered the pore. There were the upflows in the first region and the downflows in the second one. 2.7 min after the beginning of the observations flows of the opposite direction appeared in both areas. Two distinct velocities within the same spatial resolution elements were observed in the region in length 2 Mm, the so-called dual flows. The size of the area occupied by the dual flows changed quickly. The region shifted in the direction of the pore. The velocity of the flows reached of ±25 km/s. Downflow in the first region lasted about one minute. Upward movement in the second region was gradually covered the pore and continued to the end of the observations. The resulting distribution of the velocity field can be due to a new small-scale magnetic flux emergence.

Keywords: active region, chromospheric line-of-sight velocities, solar pore, the Sun
References: 

1.U. M. Leiko and N. N. Kondrashova, “The chromospheric line-of-sight velocity variations in a solar microflare,” Izv. Krym. Astrofiz. Obs. 109 (3), 72–77 (2013).

2.R. Aznar Cuadrado, S. K. Solanki, and A. Lagg, “Supersonic downflows in the solar chromosphere are very common,” in Proc. Int. Sci. Conf. on Chromospheric and Coronal Magnetic Fields, Katlenburg-Lindau, Germany, Aug. 30–Sept. 2, 2005, Ed. by D. E. Innes, A. Lagg, S. K. Solanki, and D. Danesy (ESA, Noordwijk, 2005), paper id. 49.1.

3.R. Aznar Cuadrado, S. K. Solanki, and A. Lagg, “Velocity distribution of chromospheric downflows,” in Proc. Workshop Modern Solar Facilities — Advanced Solar Science, Göttingen, Germany, Sept. 27–29, 2006, Ed. by F. Kneer, K. G. Puschmann, and A. D. Wittmann (Universitatsverlag Göttingen, Göttingen, 2007), pp. 173–176.

4.P. Brekke, N. Brynildsen, O. Kjeldseth-Moe, et al., “Multiple flow velocities in the transition region,” Adv. Space Res. 11 (5), 251–254 (1991).
https://doi.org/10.1016/0273-1177(91)90386-X

5.P. Brekke, O. Kjeldseth-Moe, and G. E. Brueckner, “Multiple downflow velocities above sunspots,” Astrophys. Space Sci. 170, 135–140 (1990).
https://doi.org/10.1007/BF00652659

6.A. Bruzek, “On arch-filament systems in spotgroups,” Sol. Phys. 2, 451–461 (1967).
https://doi.org/10.1007/BF00146493

7.A. Bruzek, “Motions in arch filament systems,” Sol. Phys. 8, 29–36 (1969).
https://doi.org/10.1007/BF00150655

8.N. Brynildsen, P. Maltby, O. Kjeldseth-Moe, and K. Wilhelm, “Dual flows and oscillations in the sunspot transition region,” Astrophys. J. Lett. 552, L77–L80 (2001).
https://doi.org/10.1086/320263

9.N. Brynildsen, P. Maltby, O. Kjeldseth-Moe, and K. Wilhelm, “Dual flows with supersonic velocities in the sunspot transition region,” Astrophys. J. 612, 1193–1195 (2004).
https://doi.org/10.1086/422838

10.P. J. Cargill and E. R. Priest, “Siphon flows in coronal loops: I. Adiabatic flow,” Sol. Phys. 65, 251–269 (1980).
https://doi.org/10.1007/BF00152793

11.L. P. Chitta, H. Peter, and P. R. Young, “A closer look at a coronal loop rooted in a sunspot umbra,” Astron. Astrophys. 587, A20 (2016).
https://doi.org/10.1051/0004-6361/201527340

12.J. G. Doyle, Y. Taroyan, B. Ishak, et al., “Study of a transient siphon flow in a cold loop,” Astron. Astrophys. 452, 1075–1082 (2006).
https://doi.org/10.1051/0004-6361:20054506

13.A. J. Engell, M. Siarkowski, M. Gryciuk, et al., “Flares and their underlying magnetic complexity,” Astrophys. J. 726, 12 (2011).
https://doi.org/10.1088/0004-637X/726/1/12

14.S. J. González Manrique, C. Kuckein, A. Pastor Yabar, et al., “Fitting peculiar spectral profiles in He I 10830 Å absorption features,” Astron. Nachr. 337, 1057–1063 (2016).
https://doi.org/10.1002/asna.201512433

15.U. Grossmann-Doerth, M. Schüssler, and O. Steiner, “Convective intensification of solar surface magnetic fields: results of numerical experiments,” Astron. Astrophys. 337, 928–939 (1998).

16.V. Hansteen, “A new interpretation of the redshift observed in optically thin transition region lines,” Astrophys. J. 402, 741–755 (1993).
https://doi.org/10.1086/172174

17.V. Hansteen and P. Maltby, “Redshifted transition region lines explained,” Adv. Space Res. 14 (4), 57–60 (1994).
https://doi.org/10.1016/0273-1177(94)90161-9

18.O. Kjeldseth-Moe, N. Brynildsen, P. Brekke, et al., “Gas flows in the transition region above sunspots,” Astrophys. J. 334, 1066–1075 (1988).
https://doi.org/10.1086/166899

19.O. Kjeldseth-Moe, N. Brynildsen, P. Brekke, et al., “Multiple flows and the fine structure of the transition region around sunspots,” Sol. Phys. 145, 257–277 (1993).
https://doi.org/10.1007/BF00690655

20.N. N. Kondrashova, “Spectropolarimetric investigation of the photosphere during a solar microflare,” Mon. Not. R. Astron. Soc. 431, 1417–1424 (2013).
https://doi.org/10.1093/mnras/stt266

21.N. N. Kondrashova, M. N. Pasechnik, S. N. Chornogor, and E. V. Khomenko, “Atmosphere dynamics of the active region NOAA 11024,” Sol. Phys. 284, 499–513 (2013).
https://doi.org/10.1007/s11207-012-0212-5

22.A. Lagg, J. Woch, S. K. Solanki, and N. Krupp, “Supersonic downflows in the vicinity of a growing pore. Evidence of unresolved magnetic fine structure at chromospheric heights,” Astron. Astrophys. 462, 1147–1155 (2007).
https://doi.org/10.1051/0004-6361:20054700

23.U. M. Leiko and N. N. Kondrashova, “The chromospheric line-of-sight velocity variations in a solar microflare,” Adv. Space Res. 55, 886–890 (2015).
https://doi.org/10.1016/j.asr.2014.07.036

24.M. S. Madjarska and J. G. Doyle, “Small-scale flows in SUMER and TRACE high-cadence co-observations,” Astron. Astrophys. 482, 273–278 (2008).
https://doi.org/10.1051/0004-6361:200809349

25.K. Muglach, W. Schmidt, and M. Knölker, “Multiple velocities observed in He I 1083 nm,” Sol. Phys. 172, 103–108 (1997).
https://doi.org/10.1023/A:1004988205716

26.K. Muglach and P. Sütterlin, “Simultaneous observations with the GCT and SoHO: High velocity events in the upper chromosphere,” in Proc. 2nd Advances in Solar Physics Euroconf.: Three-Dimensional Structure of Solar Active Regions, Preveza, Greece, Oct. 7–11, 1997, Ed. by C. E. Alissandrakis and B. Schmieder (ASP, San Francisco, CA, 1998), in Ser. ASP Conference Series, Vol. 155, pp. 341–345 (1998).

27.E. N. Parker, “Hydraulic concentration of magnetic fields in the solar photosphere. VI — Adiabatic cooling and concentration in downdrafts,” Astrophys. J. 221, 368–377 (1978).
https://doi.org/10.1086/156035

28.M. J. Penn, “An erupting active region filament: Three-dimensional trajectory and hydrogen column density,” Sol. Phys. 197, 313–335 (2000).
https://doi.org/10.1023/A:1026510025378

29.N. E. Piskunov, F. Kupka, T. A. Ryabchikova, et al., “VALD: The Vienna Atomic Line Data Base,” Astron. Astrophys., Suppl. Ser. 112, 525–535 (1995).

30.C. Sasso, A. Lagg, S. K. Solanki, et al., “Full-Stokes observations and analysis of He I 10830 Å in a flaring region,” in Proc. Conf. The Physics of Chromospheric Plasmas, Coimbra, Portugal, Oct. 9–13, 2006, Ed. by P. Heinzel, I. Dorotovic, and R. J. Rutten (ASP, San Francisco, CA, 2007), in Ser. ASP Conference Series, Vol. 368. pp. 467–471.

31.C. Sasso, A. Lagg, and S. K. Solanki, “Multicomponent HeI 10830 Å profiles in an active filament,” Astron. Astrophys. 526, A42 (2011).
https://doi.org/10.1051/0004-6361/200912956

32.T. A. Schad, S. A. Jaeggli, H. Lin, and M. J. Penn, “Spectropolarimetry of chromospheric magnetic and velocity structure above active regions,” in Proc. Solar Polarization 6, Maui, HI, May 30–June 4, 2010, Ed. by J. R. Kuhn and D. M. Harrington, H. Lin, et al. (ASP, San Francisco, CA, 2011), in Ser. ASP Conference Series, Vol. 437, pp. 483–490.

33.W. Schmidt, K. Muglach, and M. Knölker, “Free-fall downflow observed in He I 1083.0 nanometers and Hβ,” Astrophys J. 544, 567–571 (2000).
https://doi.org/10.1086/317169

34.D. Spadaro, S. Billotta, L. Contarino, et al., “AFS dynamic evolution during the emergence of an active region,” Astron. Astrophys. 425, 309–319 (2004).
https://doi.org/10.1051/0004-6361:20041004

35.T. Straus, B. Fleck, and V. Andretta, “A steady-state supersonic downflow in the transition region above a sunspot umbra,” Astron. Astrophys. 582, A116 (2015).
https://doi.org/10.1051/0004-6361/201525805

36.L. Teriaca, A. Falchi, G. Cauzzi, et al., “Solar and Heliospheric Observatory/coronal diagnostic spectrograph and ground-based observations of a two-ribbon flare: Spatially resolved signatures of chromospheric evaporation,” Astrophys. J. 588, 596–605 (2003).
https://doi.org/10.1086/373946

37.H. Uitenbroek, K. S. Balasubramaniam, and A. Tritschler, “Evidence for a siphon flow ending near the edge of a pore,” Astrophys. J. 645, 776–781 (2006).
https://doi.org/10.1086/504077

38.G. Valori, L. M. Green, P. Démoulin, et al., “Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures,” Sol. Phys. 278, 73–97 (2012).
https://doi.org/10.1007/s11207-011-9865-8

39.S. Vargas Domínguez, L. van Driel-Gesztelyi, and L. R. Bellot Rubio, “Granular-scale elementary flux emergence episodes in a solar active region,” Sol. Phys. 278, 99–120 (2012).
https://doi.org/10.1007/s11207-012-9968-x

40.H. Zirin, The Solar Atmosphere (Blaisdell, Waltham, 1966).

41.C. Zwaan, “The emergence of magnetic flux,” Sol. Phys. 100, 397–414 (1985).
https://doi.org/10.1007/978-94-009-4588-3_20