Abnormal Stokes profiles in the region of chromospheric dual flows in the surroundings of a solar pore. I. Observation

Heading: 
1Kondrashova, NN
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2018, 34(2):3-24
https://doi.org/10.15407/kfnt2018.02.003
Start Page: Solar Physics
Language: Russian
Abstract: 

The results of the analysis of the full Stokes profiles of the photospheric lines Fe I λ 630.15 and Fe I λ 630.25 nm in a region of chromospheric dual flows in the vicinity of a small pore are presented. The analysis is based on the spectropolarimetric observations of the active region NOAA 11024 with the French-Italian telescope THEMIS (Heliographic Telescope for the Study of the Magnetism and Instabilities on the Sun), operated on the island of Tenerife in the Spanish Observatorio del Teide of the Instituto de Astrofisica de Canarias. The temporal variation of the high-resolution Stokes parameters I, Q, U, V of the photospheric lines was considered for each pixel studied. The observed Stokes profiles show variety of shapes. Most of the Stokes profiles Q, U, and V have complex shape. The amplitude and the shape of the Stokes profiles were changing quickly during the observations. The dual chromospheric flows have appeared in the region of abnormal Stokes profiles. The change of the polarity of the photospheric magnetic field took place during the observations in the region of a bright chromospheric point. The evidence of an emergence of a new small-scale magnetic flux of opposite polarity is obtained. This could lead to the magnetic reconnection, appearance of the dual chromospheric flows and occurrence of a microflare.

Keywords: active regions, magnetic fields, photosphere, spectropolarimetry, the Sun
References: 

1.U. M. Leiko and N. N. Kondrashova, “The chromospheric line-of-sight velocity variations in a solar microflare,” Izv. Krym. Astrofiz. Obs. 109 (3), 72–77 (2013).

2.R. Aznar Cuadrado, S. K. Solanki, and A. Lagg, “Supersonic downflows in the solar chromosphere are very common,” in Proc. Int. Sci. Conf. on Chromospheric and Coronal Magnetic Fields, Katlenburg-Lindau, Germany, Aug. 30–Sept. 2, 2005, Ed. by D. E. Innes, A. Lagg, S. K. Solanki, and D. Danesy, (ESA, Noordwijk, 2005), in Ser.: ESA SP, Vol. 596, paper id. 49.1.

3.J. M. Beckers, A Table of Zeeman Multiplets, in Ser.: Physical Science Research Papers, Vol. 371 (Office of Aerospace Research, Bedford, MA, 1969).

4.P. Brekke, N. Brynildsen, O. Kjeldseth-Moe, et al., “Multiple flow velocities in the transition region,” Adv. Space Res. 11 (5), 251–254 (1991).
https://doi.org/10.1016/0273-1177(91)90386-X

5.A. Bruzek, “On arch-filament systems in spotgroups,” Sol. Phys. 2, 451–461 (1967).
https://doi.org/10.1007/BF00146493

6.N. Brynildsen, P. Maltby, O. Kjeldseth-Moe, and K. Wilhelm, “Dual flows and oscillations in the sunspot transition region,” Astrophys. J., Lett. 552, L77–L80 (2001).
https://doi.org/10.1086/320263

7.P. J. Cargill and E. R. Priest, “Siphon flows in coronal loops. I — Adiabatic flow,” Sol. Phys. 65, 251–269 (1980).
https://doi.org/10.1007/BF00152793

8.R. Centeno, J. Blanco Rodríguez, J. C. Del Toro Iniesta, et al., “A tale of two emergences: Sunrise II observations of emergence sites in a solar active region,” Astrophys. J., Suppl. Ser. 229, 3 (2017).
https://doi.org/10.3847/1538-4365/229/1/3

9.L. Delbouille, G. Roland, and L. Neven, Photometric Atlas of the Solar Spectrum from λ3000 to λ10000 (Inst. d’Astrophysique, Liege, 1973).

10.J. G. Doyle, Y. Taroyan, B. Ishak, et al., “Study of a transient siphon flow in a cold loop,” Astron. Astrophys. 452, 1075–1082 (2006).
https://doi.org/10.1051/0004-6361:20054506

11.A. J. Engell, M. Siarkowski, M. Gryciuk, et al., “Flares and their underlying magnetic complexity,” Astrophys. J. 726, 12 (2011).
https://doi.org/10.1088/0004-637X/726/1/12

12.C. E. Fischer, C. U. Keller, F. Snik, et al., “Unusual Stokes V profiles during flaring activity of a delta sunspot,” Astron. Astrophys. 547, A34 (2012).
https://doi.org/10.1051/0004-6361/201219272

13.M. Franz and R. Schlichenmaier, “The velocity field of sunspot penumbrae. II. Return flow and magnetic fields of opposite polarity,” Astron. Astrophys. 550, A97 (2013).
https://doi.org/10.1051/0004-6361/201220708

14.A. S. Gadun, S. K. Solanki, V. A. Sheminova, and S. R. O. Ploner, “A formation mechanism of magnetic elements in regions of mixed polarity,” Sol. Phys. 203, 1–7 (2001).
https://doi.org/10.1023/A:1012729811113

15.A. A. Golovko, “The crossover effect in sunspots and the fine structure of penumbra,” Sol. Phys. 37, 113–125 (1974).
https://doi.org/10.1007/BF00157848

16.S. J. González Manrique, C. Kuckein, A. Pastor Yabar, et al., “Fitting peculiar spectral profiles in He I 10830 A absorption features,” Astron. Nachr. 337, 1057–1063 (2016).
https://doi.org/10.1002/asna.201512433

17.V. M. Grigorjev and J. M. Katz, “The crossover and magneto-optical effects in sunspot spectra,” Sol. Phys. 22, 119–128 (1972).
https://doi.org/10.1007/BF00145466

18.U. Grossmann-Doerth, M. Schüssler, M. Sigwarth, and O. Steiner, “Strong Stokes V asymmetries of photospheric spectral lines: What can they tell us about the magnetic field structure?,” Astron. Astrophys. 357, 351–358 (2000).

19.E. V. Khomenko, M. Collados, S. K. Solanki, et al., “Quiet-Sun inter-network magnetic fields observed in the infrared,” Astron. Astrophys. 408, 1115–1135 (2003).
https://doi.org/10.1051/0004-6361:20030604

20.E. V. Khomenko, S. Shelyag, S. K. Solanki, and A. Vögler, “Stokes diagnostics of simulations of magnetoconvection of mixed-polarity quiet-Sun regions,” Astron. Astrophys. 442, 1059–1078 (2005).
https://doi.org/10.1051/0004-6361:20052958

21.O. Kjeldseth-Moe, “On the magnetic-field configuration in sunspots,” in Proc. 35th IAU Symp.: Structure and Development of Solar Active Region, Budapest, Hungary, Sept. 4–8, 1967, Ed. by K. O. Kiepenheuer (Reidel, Dordrecht, 1968), p. 202.

22.O. Kjeldseth-Moe, N. Brynildsen, P. Brekke, et al., “Multiple flows and the fine structure of the transition region around sunspots,” Sol. Phys. 145, 257–277 (1993).
https://doi.org/10.1007/BF00690655

23.N. N. Kondrashova, “Spectropolarimetric investigation of the photosphere during a solar microflare,” Mon. Not. R. Astron. Soc. 431, 1417–1424 (2013).
https://doi.org/10.1093/mnras/stt266

24.N. N. Kondrashova, M. N. Pasechnik, S. N. Chornogor, and E. V. Khomenko, “Atmosphere dynamics of the active region NOAA 11024,” Sol. Phys. 284, 499–513 (2013).
https://doi.org/10.1007/s11207-012-0212-5

25.M. Kubo, B. Chye Low, and B. W. Lites, “Unresolved mixed polarity magnetic fields at flux cancellation site in solar photosphere at 0.3'' spatial resolution,” Astrophys. J., Lett. 793, L9 (2014).
https://doi.org/10.1088/0004-637X/793/1/9

26.A. Lagg, J. Woch, S. K. Solanki, and N. Krupp, “Supersonic downflows in the vicinity of a growing pore. Evidence of unresolved magnetic fine structure at chromospheric heights,” Astron. Astrophys. 462, 1147–1155 (2007).
https://doi.org/10.1051/0004-6361:20054700

27.U. M. Leiko and N. N. Kondrashova, “The chromospheric line-of-sight velocity variations in a solar microflare,” Adv. Space Res. 55, 886–890 (2015).
https://doi.org/10.1016/j.asr.2014.07.036

28.U. M. Leiko and N. N. Kondrashova, “Dual chromospheric flows in the vicinity of a solar pore,” Kinematics Phys. Celestial Bodies 33, 111–121 (2017).
https://doi.org/10.3103/S0884591317030059

29.A. Lopéz Ariste, J. Rayrole, and M. Semel, “First results from THEMIS spectropolarimetric mode,” Astron. Astrophys. Suppl. Ser. 142, 137–148 (2000).
https://doi.org/10.1051/aas:2000144

30.K. Muglach, W. Schmidt, and M. Knölker, “Multiple velocities observed in HeI 1083 nm,” Sol. Phys. 172, 103–108 (1997).
https://doi.org/10.1023/A:1004988205716

31.E. N. Parker, “Hydraulic concentration of magnetic fields in the solar photosphere. VI — Adiabatic cooling and concentration in downdrafts,” Astrophys. J., Part 1 221, 368–377 (1978).
https://doi.org/10.1086/156035

32.A. K. Pierce and J. B. Breckinridge, “The Kitt Peak Table of Photographic Solar Spectrum Wavelengths,” Kitt Peak National Observatory, Contribution No. 559 (1972).

33.S. R. O. Ploner, M. Schussler, S. K. Solanki, et al., “The formation of one-lobed Stokes V profiles in an inhomogeneous atmosphere,” in Proc. Advanced Solar Polarimetry — Theory, Observation, and Instrumentation, 20th NSO/Sacramento Peak Summer Workshop, Sacramento Peak, NM, Sept. 11–15, 2000, Ed. by M. Sigwarth; ASP Conf. Proc. 236, 371–378 (2001).

34.I. Rueedi, S. K. Solanki, W. Livingston, and J. O. Stenflo, “Infrared lines as probes of solar magnetic features. III. Strong and weak magnetic fields in plages,” Astron. Astrophys. 263, 323–338 (1992).

35.I. Rueedi, S. K. Solanki, and D. Rabin, “Infrared lines as probes of solar magnetic features. IV. Discovery of a sifon flows,” Astron. Astrophys. 261, L21–L24 (1992).

36.A. Sainz Dalda, J. Martínez-Sykora, L. Bellot Rubio, and A. Title, “Study of single-lobed circular polarization profiles in the quiet Sun,” Astrophys. J. 748, 38 (2012).
https://doi.org/10.1088/0004-637X/748/1/38

37.J. Sanchez Almeida, E. Landi Degl’Innocenti, V. Martinez Pillet, and B. W. Lites, “Line asymmetries and the microstructure of photospheric magnetic fields,” Astrophys. J. 466, 537–548 (1996).
https://doi.org/10.1086/177530

38.J. Sanchez Almeida and B. W. Lites, “Observation and interpretation of the asymmetric Stokes Q, U, and V line profiles in sunspots,” Astrophys. J. 398, 359–374 (1992).
https://doi.org/10.1086/171861

39.J. Sánchez Almeida and B. W. Lites, “Physical properties of the solar magnetic photosphere under the MISMA hypothesis. II. Network and internetwork fields at the disk center,” Astrophys. J. 532, 1215–1229 (2000).
https://doi.org/10.1086/308603

40.K. Sankarasubramanian and T. Rimmele, “Bisector analysis of Stokes profiles: Effects due to gradients in the physical parameters,” Astrophys. J. 576, 1048–1063 (2002).
https://doi.org/10.1086/341885

41.C. Sasso, A. Lagg, S. K. Solanki, et al., “Full-Stokes observations and analysis of He I 10830 Å in a flaring region,” in Proc. The Physics of Chromospheric Plasmas, Coimbra, Portugal, Oct. 9–13, 2006 (Astronomical Society of the Pacific, San Francisco, CA, 2007), Ed. by P. Heinzel, I. Dorotovic, and R. J. Rutten, in Ser.: ASP Conference Series, Vol. 368, p. 467.

42.C. Sasso, A. Lagg, and S. K. Solanki, “Multicomponent HeI 10830 Å profiles in an active filament,” Astron. Astrophys. 526, A42 (2011).
https://doi.org/10.1051/0004-6361/200912956

43.R. Schlichenmaier and M. Collados, “Spectropolarimetry in a sunspot penumbra. Spatial dependence of Stokes asymmetries in Fe I 1564.8 nm,” Astron. Astrophys. 381, 668–682 (2002).
https://doi.org/10.1051/0004-6361:20011459

44.W. Schmidt, K. Muglach, and M. Knölker, “Free-fall downflow observed in He I 1083.0 nanometers and Hß,” Astrophys J. 544, 567–571 (2000).
https://doi.org/10.1086/317169

45.V. A. Sheminova, “On the origin of the extremely asymmetric Stokes V profiles in an inhomogeneous atmosphere,” Kinematics Phys. Celestial Bodies 21, 120–136 (2005). arXiv 0902.2940.

46.T. Shimizu, B. W. Lites, Y. Katsukawa, et al., “Frequent occurrence of high-speed local mass downflows on the solar surface,” Astrophys. J. 680, 1467–1476 (2008).
https://doi.org/10.1086/588775

47.M. Sigwarth, “Properties and origin of asymmetric and unusual Stokes V profiles observed in solar magnetic fields,” Astrophys. J. 563, 1031–1044 (2001).
https://doi.org/10.1086/323963

48.M. Sigwarth, K. S. Balasubramaniam, M. Knölker, and W. Schmidt, “Dynamics of solar magnetic elements,” Astron. Astrophys. 349, 941–955 (1999).

49.A. Skumanich and B. Lites, “Velocity gradients across a flaring neutral line from Stokes II measurements,” in Proc. Solar Polarimetry, 11th Sacramento Peak Summer Workshop, Ed. by L. J. November (National Solar Observatory, Sunspot, NM, 1991), pp. 307–317.

50.H. Socas-Navarro, J. Trujillo Bueno, and B. Ruiz Cobo, “Anomalous circular polarization profiles in sunspot chromospheres,” Astrophys. J. 544, 1141–1154 (2000).
https://doi.org/10.1086/317261

51.D. Spadaro, S. Billotta, L. Contarino, et al., “AFS dynamic evolution during the emergence of an active region,” Astron. Astrophys. 425, 309–319 (2004).
https://doi.org/10.1051/0004-6361:20041004

52.J. H. Thomas and B. Montesinos, “Siphon flows in isolated magnetic flux tubes. IV—Critical flows with standing tube shocks,” Astrophys. J. 375, 404–413 (1991).
https://doi.org/10.1086/170198

53.G. Valori, L. M. Green, P. Démoulin, et al., “Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures,” Sol. Phys. 278, 73–97 (2012).
https://doi.org/10.1007/s11207-011-9865-8

54.S. Vargas Dominguez, L. van Driel-Gesztelyi, and L. R. Bellot Rubio, “Granular-scale elementary flux emergence episodes in a solar active region,” Sol. Phys. 278, 99–120 (2012).
https://doi.org/10.1007/s11207-012-9968-x

55.Z. Xu, A. Lagg, and S. K. Solanki, “Magnetic structures of an emerging flux region in the solar photosphere and chromosphere,” Astron. Astrophys. 520, A77 (2010).
https://doi.org/10.1051/0004-6361/200913227