Low-frequency kinetic waves in plasmas of magnetic loops at the early stage of flare process in active region

Heading: 
1Kryshtal, AN, 1Voitsekhovska, AD, 1Gerasimenko, SV
1Space Research Institute of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(3):3-33
https://doi.org/10.15407/kfnt2019.03.003
Start Page: Solar Physics
Language: Russian
Abstract: 

Process of rise and development of low-frequency instability of kinetic Alfven waves and kinetic ion-acoustic waves in preflare solar plasma near the footpoints of magnetic loops, i. e. in the area, which corresponds to the height of low-middle chromospheres. The observational data obtained in the framework of international missions Hinode, SDO and IRIS demonstrate that magnetic field’s amplitude can vary in the interval from few tens up to few hundreds gausses. Existence of large-scale weak electric fields (“subdreicer” one, in generally accepted terminology) during enough long time (with respects to the time of instability development) can be considered in the framework of the waves’ generation in the investigated area. One more source of instability are slow drift motions of plasma which are the result of spatial inhomogeneties of temperature and density of medium. Our former investigations of the obtained solutions of dispersive relation for low-frequency kinetic waves, which are generated due to the development of correspond instabilities, have allowed to establish important: result for some semiempirical models of solar atmosphere the generated kinetic waves are the members of the only two families, namely “family of kinetic Alfven waves” and “family of kinetic ion-acoustic waves”. It has been proved, that considered wave generation can take place in plasma with pure Coulomb conductivity as well as in plasma with saturated small-scale Bernstein turbulence. This last one can appear in the investigated area as result of natural evolution of instability of the first harmonics of quasi-bernsteinian modes. This mode has much more low threshold with respect to the amplitude of subdreicer field than low-frequency kinetic waves. Except this fact the waves considered have enough low degree of plasma nonisothermality, which is needed for the appearance on instability. The principal possibility of existence of nondamped kinetic waves with small amplitudes in the area under investigation has been proved too. It is very important for the increase of probability of realization of the process of three-wave investigation and appearance of the spikes of microwave emission in preflare state of active region and, correspondently for making the combine short term prediction of a flare in it.

Keywords: flares, magnetic field, plasma instabilities, Sun, Sun activity
References: 

1. Aleksandrov A. F., Bogdankevich L. S., Rukhadze A. A. (1989). Osnovy elektrodinamiki plazmy. M.: Vysshaya shkola, 424.

2. Galeev A., Lominadze D., Pataraya A., Sagdeev R., Stepanov K. (1972). Anomal'noye soprotivleniye plazmy vsledstviye neustoychivosti na tsiklotronnykh garmonikakh. Zhurn. eksper. i teoret. fiz. 417. 112—114.

3. Galeev A. A., Sagdeev R. Z. (1973). Nelineynaya teoriya plazmy. Voprosy teorii plazmy. M.: Gosatomizdat, 7. 3—145.

4. Zagorodniy A. G., Cheremnykh O. K. (2014). Vvedeniye v fiziku plazmy. Kiyev: Naukova dumka, 696.

5. Kadomtsev B. B., Pogutse O. P. (1967). Turbulentnyye protsessy v toroidal'nykh sistemakh. Voprosy teorii plazmy. M.: Gosatomizdat, 5. 209—350.

6. Krishtal A. N., Voytsekhovskaya A. D., Gerasimenko S. V., Cheremnykh O. K. (2017). Vliyaniye melkomasshtabnoy bernshteynovskoy turbulentnosti na nizkochastotnyye plazmennyye volny v predvspyshechnoy atmosfere Solntsa. Kinematika i fizika nebes. tel. 33(4). 3—28.

7. Krishtal A. N., Gerasimenko S. V., Voytsekhovskaya A. D. (2010). O prirode vspleskov mikrovolnovogo izlucheniya v petel'nykh strukturakh aktivnoy oblasti. Kosmicheskaya nauka i tekhnologiya. 16(5). 29—37.

8. Kroll N., Trayvelpis A. (1975). Osnovy fiziki plazmy. M.: Mir, 526.

9. Mikhaylovskiy A. B. (1974). Teoriya plazmennykh neustoychivostey. Neustoychivosti neodnorodnoy plazmy. M.: Atomizdat, 360.

10. Osnovy fiziki plazmy. (1984). Pod red. A. A. Galeyeva i R. Sudana, v 2-kh tomakh, tom 2. M.: Energoatomizdat, 632.

11. Somov B. V., Titov V. S., Vernetta A. I. (1987). Magnitnoye peresoyedineniye v solnechnykh vspyshkakh. Itogi nauki i tekhniki. Astronomiya. 34. 136—237.

12. Chen F. (1987). Vvedeniye v fiziku plazmy. M.: Mir, 398.

13. Aschwanden M. I. (2001). An evaluation of coronal heating models for active regions based on Yohkoh, SOHO and TRACE observations. Astrophys. J. 560. 1035—1043.
https://doi.org/10.1086/323064

14. Aschwanden M. (2005). Physics of the Solar Corona ISBN 3-540-30765-6. Praxis Publishing Ltd., Chichester, UK; Springer, New York, Berlin. 892.

15. Aurass H. (1993). Radio type IV burst fine structures and the dynamics of flare process. Proc. of the 144-th IAU Colloq. “Solar Coronal Structures”. Bratislava, Slovakia, 20—24 September. Eds V. Rusin, P. Heinzel, I.-C. Vial. VEDA Publishing Company, Bratislava. 251—256.
https://doi.org/10.1017/S0252921100025392

16. Battaglia M., Fletcher L., Simхes Paulo J. A. (2014). Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop? Astrophys. J. 789. 789—799.
https://doi.org/10.1088/0004-637X/789/1/47

17. Benka S. G. (1994). DC-electric fields in solar flares; theory meets observation. Proc. Kofu Symp. “New look at the Sun with emphasis on advanced observations of corona dynamics and flares”, Kofu, September 6—10, 1993/ Ed. S. Enome, T. Hirayama. — Nobeyama Radio Observatory. 360. 225—229.

18. Bogod V. M., Yasnov L. V. (2009). Polarization of microwave radio emission of flare-producing solar active regions. Solar Phys. 255. 253—271.
https://doi.org/10.1007/s11207-009-9325-x

19. Brodin G., Stenflo L., Shukla P. K. (2006). Nonlinear interactions between kinetic and ion-sound waves. Solar Phys. 236. 285—291.
https://doi.org/10.1007/s11207-006-0125-2

20. Cheremnykh O. K., Fedun V., Kryshtal A. N., Verth G. (2017). Incompressible magnetohydrodynamic modes in the thin magnetically twisted flux tube. Astron. and Astrophys. 64. 62—71.
https://doi.org/10.1051/0004-6361/201629863

21. Cheremnykh O. K., Fedun V., Ladikov-Roev Yu., Verth G. (2018). On the stability of incompressible MHD modes in twisted magnetic cylinders with field-aligned flow. Astrophys. J. М. 866. 86—98.
https://doi.org/10.3847/1538-4357/aadb9f

22. Druett M., Scullion E., Zharkova V. V., Matthews S., Zharkov S., Luc Rouppe Van der Coort. (2017). Beam electrons as a source of Hα flare ribbons. Nature Commun. 8. 16905.
https://doi.org/10.1038/ncomms15905

23. Fárník, F., Savy S. K. (1998). Soft X-Ray Pre-Flare Emission Studied in Yohkoh-SXT Images. Solar Phys. 183. 339—357.
https://doi.org/10.1023/A:1005092927592

24. Fontenla J. M., Avrett E. H., Loeser R. (1993). Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406. 319—345.
https://doi.org/10.1086/172443

25. Foukal P., Hinata S. (1991). Electric fields in the solar atmosphere: a review. Solar Phys. 132(2). 307—334.
https://doi.org/10.1007/BF00152291

26. Griem H. R. (1974). Spectral line broadening by plasmas. New York, Academic Press, Inc. (Pure and Applied Phys. Vol. 39), 421 p.

27. Harra L. K., Matthews S. A., Culhane J. L. (2001). Nonthermal velocity evolution in the precursor phase of a solar flare. Astrophys. J. 549(2). L245—L248.
https://doi.org/10.1086/319163

28. Hasegava A., Chen L. (1976). Parametric decay of “kinetic Alfven wave” and its application to plasma heating. Phys. Rev. Lett. 36. 1362—1365.
https://doi.org/10.1103/PhysRevLett.36.1362

29. Hasegava A., Chen L. (1976). Kinetic processes in plasma heating by resonant mode conversion of Alfven wave. Phys. Fluids. 19(12). 1924—1934.
https://doi.org/10.1063/1.861427

30. Heyvaerts J., Priest E. R., Rust D. M. (1977). Models of solar flares. Astrophys. J. 216. 213—221.
https://doi.org/10.1086/155453

31. Hudson H. S. (2007). The physics of chromospheric plasmas / Eds P. Heinzel, I. Dorotovich, R. Rutten. ASP Conf. Ser.: Coimbra Solar Physics Meeting, 368. 365.

32. Ionson J. (1978). Resonant absorption of alfvenic surface waves and the heating of solar coronal loops. Astrophys. J. 236(2). 650—673.
https://doi.org/10.1086/156648

33. Kadomtsev B. B. (1965). Plasma turbulence. New York: Academic Press.

34. Kashapova L. K., Meshalkina N. S., Kisil M. S. (2012). Detection of acceleration processes during the initial phase of the 12 June 2010 flare. Solar Phys. 280. 525— 535.
https://doi.org/10.1007/s11207-012-0080-z

35. Kryshtal A. N. (2002). Low-frequency wave instabilities in a plasma with a quasistatic electric field and weak spatial inhomogeneity. J. Plasma Phys. 68. 137—148.
https://doi.org/10.1017/S0022377802001769

36. Kryshtal A. N., Fedun V., Gerasimenko S. V., Voitsekhovska A. D. (2015). «Oblique» Bernstein mode generation near the upper-hybrid frequency in solar pre-flare plasma. Solar Phys. 290(11). 3331—3341.
https://doi.org/10.1007/s11207-015-0793-x

37. Kryshtal A. N., Gerasimenko S. V. (2004). Slow magnetoacoustic-like waves in post-flare loop. Astron. and Astrophys. 420. 1107—1115.
https://doi.org/10.1051/0004-6361:20040119

38. Kryshtal A. N., Gerasimenko S. V., Voitsekhovska A. D. (2012). «Oblique» Bernstein modes in solar preflare plasma: Generation of second harmonics. Adv. Space Res. 49. 791—796.
https://doi.org/10.1016/j.asr.2011.11.024

39. Kryshtal A., Gerasimenko S., Voitsekhovska A., Fedun V. (2013). The ion-acoustic instability in the pre-flare plasma near the loop footpoints at solar active regions. Ann. Geophys. 31(12). 2193—2200.
https://doi.org/10.5194/angeo-31-2193-2013

40. Kryshtal A., Gerasimenko S., Voitsekhovska A. (2014). Small-scale Langmuir wave instability in preflare chromospheres of solar active region. Astrophys. Space Sci. 349(2). Р. 637—646.
https://doi.org/10.1007/s10509-013-1665-1

41. Kryshtal A., Gerasimenko S., Voitsekhovska A., Cheremnykh O. K. (2014). One type of three- wave interaction of low-frequency waves in magnetoactive plasma of the solar atmosphere. Kinematics Phys. Celest. Bodies. 30. 147—154.
https://doi.org/10.3103/S0884591314030052

42. Kumar P., Nakariakov V. N., Kyung-Suk Cho. (2016). Observations of a quasi-periodic pulsation in hard X-ray, radio and extreme-ultraviolet wavelengths. Astrophys. J. 822(3). Р. 7—21.
https://doi.org/10.3847/0004-637X/822/1/7

43. Levens P. J., Schmieder B., Labrosse N., Lopez Ariste A. (2016). Structure of prominence legs: plasma and magnetic field. Astrophys. J. 818(1). Р. 31—43.
https://doi.org/10.3847/0004-637X/818/1/31

44. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. (1980). Semiempirical models of chro¬mospheric flare regions. Astrophys. J. 242(1). 336—351.
https://doi.org/10.1086/158467

45. Miller I. A., Cargil P. I., Emslie A. G., Holman G. D., Dennis B. R., La Rosa T. N., Wiglee R. M., Benka S. G., Tsuneta S. (1997). Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, N A7. 14631— 14659.
https://doi.org/10.1029/97JA00976

46. Nakariakov V. M., Verwichte E. (2005). Coronal waves and oscillations. Living Rev. Solar Phys. 2. 65.
https://doi.org/10.12942/lrsp-2005-3

47. Núñez M., Fidalgo R., Baena M., Morales R. (2005). The influence of active region information on the prediction of solar flares: an empirical model using data mining. Ann. Geophys. 23. 3129—3138.
https://doi.org/10.5194/angeo-23-3129-2005

48. Reale F. (2010). Coronal loops: Observations and modeling of confined plasma. Living Rev. Solar Phys. 7. 78—83.
https://doi.org/10.12942/lrsp-2010-5

49. Reznikova V. E., Melnikov V. F., Shibasaki K., Gorbikov S. P., Pyatakov N. P., Myagkova I. N., Ji H. (2009). 2002 August 24 limb flare loop: Dynamics of microwave brightness distribution. Astrophys. J. 697. 735—746.
https://doi.org/10.1088/0004-637X/697/1/735

50. Schmahl E. I., Webb D. K., Woodgate B., et al. (1986). Coronal manifestations of preflare activity. Energetic phenomena on the Sun (“Impulsive Phase Transport”) / Eds M. Kundu and B. Woodgate. Washington, DC,NASA CP-2439. L48—L78.

51. Sirenko O., Voitenko Yu., Goossens M., Yukhimuk A. (2000). Nonlinear coupling of O- and X-mode radio emission and Alfven waves in the solar corona. Waves in dusty, solar, and space plasmas. AIP Conf. Proc. 537. 287—294.
https://doi.org/10.1063/1.1324952

52. Solanki S. K. (1993). Small-scale solar magnetic fields: an overview. Space Sci. Revs. 63. 1—183.
https://doi.org/10.1007/BF00749277

53. Vernazza J. E., Avrett E. H., Loeser R. (1981). Structure of the solar chromosphere. III — Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser. 45(1). 635—725.
https://doi.org/10.1086/190731

54. Willes A. J., Robinson P. A. (1996). Electron-cyclotron maser theory for noninteger radio emission frequencies in solar microwave spike bursts. Astrophys. J. 467(1). Р. 465—472.
https://doi.org/10.1086/177620

55. Yukhimuk A., Fedun V., Sirenko O., Voitenko Yu. (2000). Excitation of fast and slow magnetosonic waves by kinetic Alfven waves. AIP Conf. Proc. 220. 537. (Proc. Conf.: Waves in Dusty, Solar and Space Plasmas. Leuven, Belgium, 26 May, 2000).
https://doi.org/10.1063/1.1324955

56. Yukhimuk V., Voitenko Yu., Fedun V., Yukhimuk A. (1998). Generation of kinetic Alfven waves by upper-hybrid pump waves. J. Plasma Phys. 60, part 3. 485—495.
https://doi.org/10.1017/S0022377898006874

57. Zharkova V. V., Kashapova L. K., Chornogor S. N., Andrienko O. V. (2011). The effect of energetic particle beams on the chromospheric emission of the 2004 July 25 flare. Mon. Notic. Roy. Astron. Soc. 411(3). 1562—1574.
https://doi.org/10.1111/j.1365-2966.2010.17792.x