Diagnostics of photospheric jets of the quiet Sun atmosphere
1Stodilka, MI, 2Sukhorukov, AV, 1Prysiazhnyi, AI 1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine 2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(5):48-84 |
https://doi.org/10.15407/kfnt2019.05.048 |
Start Page: Solar Physics |
Language: Ukrainian |
Abstract: From the data of 2D spectral observations of a quiet region of the solar disk center in the Fe I 557.609 nm line, 3D hydrodynamic models of photospheric jets are built by solving the inverse radiative transfer problem. The obtained models describe thermodynamic parameters and the complete velocity field (vertical and horizontal). It is shown that the pho-tospheric jets under consideration arise from the interaction of the surrounding environment with the field of the magnetic tube. The jets are located in a region of a unipolar magnetized downflow at the impact point of two horizontal flows and tend to occur at the edge of magnetic tubes. Observed gas velocities are subsonic in downflows of the jets. Energy release in the photospheric jets is predominantly localized in the middle photosphere layers, where the excess pressure appears maximal. Compared with the surrounding media, mass density in the jets is significantly increased in the upper layers and decreased in the lower layers of the photosphere. |
Keywords: diagnostics, jets, photosphere, Sun |
1. Baran O. A., Stodilka M. I. (2015) Convection structure in the solar photosphere at granulation and mesogranulation scales. Kinematics Phys. Celestial Bodies. 31(2). P. 65—72.
https://doi.org/10.3103/S0884591315020026
2. Vajnshtejn L. A., Sobelman I. I., Yukov E. A. (1979) Vozbuzhdenie atomov i ushirenie spektralnyh linij. M.: Nauka. 320 p. (in Russian).
3. Gurtovenko E. A., Kostyk R. I. (1989) Fraungoferov spektr i sistema solnechnyh sil oscillyatorov. K.: Nauk. dumka. 200 p. (in Russian).
4. Kondrashova N. N. (2016) Spectropolarimetric investigation of an Ellerman bomb: 1. Observations. Kinematics Phys. Celestial Bodies. 32(1). P. 13—22.
https://doi.org/10.3103/S0884591316010050
5. Kondrashova N. N. (2016) Spectropolarimetric investigation of an Ellerman bomb: 2. Photospheric models. Kinematics Phys. Celestial Bodies. 32(2). P. 70—77.
https://doi.org/10.3103/S0884591316020021
6. Leng K. (1978) Astrofizicheskie formuly. M.: Mir. T. 1. 448 p. (in Russian).
7. Pasechnik M. N. (2016) Spectral study of a pair of Ellerman bombs. Kinematics Phys. Celestial Bodies. 32(2). P. 55—69.
https://doi.org/10.3103/S0884591316020057
8. Pasechnik M. N. (2018) Spectral Study of Ellerman Bombs. Photosphere. Kinematics Phys. Celestial Bodies. 34(2). P. 68—81.
https://doi.org/10.3103/S0884591318020071
9. Samarskij A. A. (1971) Vvedenie v teoriyu raznostnyh skhem. M.: Nauka. 552 p. (in Russian).
10. Severnyj A. B. (1956) Tonkaya struktura emissii aktivnyh obrazovanij na Solnce. Astronomicheskij zhurnal. 33(1). P. 72—79 (in Russian).
11. Stodilka M. I. (2016) Diagnostics of horizontal velocity field in the solar atmosphere: Line Ba II 455.403 nm. Kinematics Phys. Celestial Bodies. 32(3). P. 145—152.
https://doi.org/10.3103/S0884591316030041
12. Stodilka M. I. (2002) Inversna zadacha dlya doslidzhennya neodnoridnostej atmosfery Soncya ta zir. Zhurnal fizychnykh doslidzhen. 6(4). P. 435—442 (in Ukrainian).
13. Stodilka M. I. (2003) The Tychonoff stabilizers in inverse problems of spectral studies. Kinematics Phys. Celestial Bodies. 19(4). P. 229—235.
14. Abramenko V., Yurchyshyn V., Goode P., Kilcik A. (2010) Statistical distribution of size and lifetime of bright points observed with the New Solar Telescope. Astrophys. J. Lett. 725(1). P. L101—L105.
https://doi.org/10.1088/2041-8205/725/1/L101
15. Anstee S. D., O’Mara B. J. (1995) Width cross-sections for collisional broadening of s-p and p-s transitions of atomic hydrogen. Mon. Notic. Roy. Astron. Soc. 276. P. 859—866.
https://doi.org/10.1093/mnras/276.3.859
16. Archontis V., Hood A. W. (2009) Formation of Ellerman bombs due to 3D flux emergence. Astron. and Astrophys. 508(3). P. 1469—1483.
https://doi.org/10.1051/0004-6361/200912455
17. Archontis V., Hood A. W. (2013) A numerical model of standard to blowout jets. Astrophys. J. Lett. 769(2). L21. P. 1—5.
https://doi.org/10.1088/2041-8205/769/2/L21
18. Asplund M., Ludwig H. G., Nordlund А., Stein R. F. (2000) The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation. Astron. and Astrophys. 359(2). P. 669—681.
19. Ballester J. L., Alexeev I., Collados M., et al. (2018) Partially ionized plasmas in astrophysics. Space Sci. Rev. 214(2). article id. 58. 149 p.
https://doi.org/10.1007/s11214-018-0485-6
20. Beeck B., Schüssler M., Cameron R. H., Reiners A. (2015) Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations. Astron. and Astrophys. 581(A42). P. 1— 16.
https://doi.org/10.1051/0004-6361/201525788
21. Bello González N., Danilović S., Kneer F. (2013) On the structure and dynamics of Ellerman bombs. Detailed study of three events and modelling of . Astron. and Astrophys. 557(A102).
https://doi.org/10.1051/0004-6361/201321632
22. Bellot Rubio L. R., Rodríguez Hidalgo I., Collados M., et al. (2001) Observation of convective collapse and upward-moving shocks in the quiet Sun. Astrophys. J. 560(2). P. 1010—1019.
https://doi.org/10.1086/323063
23. Berger T. E., Title A. M. (1996) On the dynamics of small-scale solar magnetic elements. Astrophys. J. 463. P. 365—371.
https://doi.org/10.1086/177250
24. Berlicki A., Heinzel P. (2014) Observations and NLTE modeling of Ellerman bombs. Astron. and Astrophys. 567. A110. P. 1—10.
https://doi.org/10.1051/0004-6361/201323244
25. Borrero J. M., Martínez Pillet V., Schmidt W., et al. (2013) Is magnetic reconnection the cause of supersonic upflows in granular cells? Astrophys. J. 768(1). 69. P. 1— 9.
https://doi.org/10.1088/0004-637X/768/1/69
26. Bovelet B., Wiehr E. (2003) Dynamics of the solar active region finestructure. Astron. and Astrophys. 412. P. 249—255.
https://doi.org/10.1051/0004-6361:20031305
27. Chesny D. L., Oluseyi H. M., Orange N. B., Champey P. (2015) Quiet-Sun network bright point phenomena with sigmoidal signatures. Astrophys. J. 814(2). 124. P. 1—10.
https://doi.org/10.1088/0004-637X/814/2/124
28. Cheung M. C. M., Schüssler M., Tarbell T. D., Title A. M. (2008) Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations. Astrophys. J. 687(2). P. 1373—1387.
https://doi.org/10.1086/591245
29. Curdt W., Dwivedi B. N., Innes D. E. (1997) EUV observations of bi-directional jets in the solar corona. — Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, held 17-20 June in Oslo, Norway,1997. Ed. A. Wilson, ESA, 1997. P. 303.
30. Danilovic S., Beeck B., Pietarila A., et al. (2010) Transverse component of the magnetic field in the solar photosphere observed by SUNRISE. Astrophys. J. Lett. 723(2). P. L149—L153.
https://doi.org/10.1088/2041-8205/723/2/L149
31. Danilovic S., Cameron R. H., Solanki S. K. (2015) Simulated magnetic flows in the solar photosphere. Astron. and Astrophys. 574(A28). P. 1—7.
https://doi.org/10.1051/0004-6361/201423779
32. de la Cruz Rodríguez J., Löfdahl M. S. G., Sütterlin P., Hillberg T., Rouppe van der Voort L. (2015) CRISPRED: A data pipeline for the CRISP imaging spectropolarimeter. Astron. and Astrophys. 573(A40). P. 1—13.
https://doi.org/10.1051/0004-6361/201424319
33. del Pino Alemán T., Trujillo Bueno J., Štěpán J., Shchukina N. (2018) A novel investigation of the small-scale magnetic activity of the quiet Sun via the Hanle effect in the Sr I 4607 A line. Astrophys. J. 863. P. 164.
https://doi.org/10.3847/1538-4357/aaceab
34. Ding J. Y., Madjarska M. S., Doyle J. G., et al. (2011) Magnetic reconnection resulting from flux emergence: implications for jet formation in the lower solar atmosphere? Astron. and Astrophys. 535(A95). P. 1—10.
https://doi.org/10.1051/0004-6361/201117515
35. Ellerman F. (1917) Solar hydrogen "bombs". Astrophys. J. 46. P. 298—301.
https://doi.org/10.1086/142366
36. Felipe T., Khomenko E., Collados M. (2010) Magneto-acoustic waves in sunspots: first results from a new three-dimensional nonlinear magnetohydrodynamic code. Astrophys. J. 719(1). P. 357—377.
https://doi.org/10.1088/0004-637X/719/1/357
37. Fischer C. E., Bello González N., Rezaei R. (2016) Quiet Sun magnetic field evolution observed with Hinode SOT and IRIS. — Coimbra Solar Physics Meeting: Ground- based Solar Observations in the Space Instrumentation Era Proceedings of a Meeting held at the University of Coimbra, Coimbra, Portugal In 5-9 October 2015. Edited by I. Dorotovic, C. E. Fischer, M. Temmer. ASP Conference Series, Vol. 504. San Francisco: ASP. P. 19.
38. Gehren T., Butler K., Mashonkina L., et al. (2001) Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. I. The solar strong line spectrum. Astron. and Astrophys. 366. P. 981—1002.
https://doi.org/10.1051/0004-6361:20000287
39. Georgoulis M. K., Rust D. M., Bernasconi P. N., et al. (2002) Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575(1). P. 506—528.
https://doi.org/10.1086/341195
40. Gontikakis C., Archontis V., Tsinganos K. (2009) Observations and 3D MHD simulations of a solar active region jet. Astron. and Astrophys. 506(3). P. L45—L48.
https://doi.org/10.1051/0004-6361/200913026
41. Grossmann-Doerth U., Schüssler M., Steiner O. (1998) Convective intensification of solar surface magnetic fields: results of numerical experiments. Astron. and Astrophys. 337. P. 928—939.
42. Hashimoto Yu., Kitai R., Ichimoto K., et al. (2010) Internal fine structure of Ellerman bombs. Publs Astron. Soc. Jap. 62(4). P. 879—891.
https://doi.org/10.1093/pasj/62.4.879
43. Hong Jie, Ding M. D., Li Ying, et al. (2014) Spectral observations of Ellerman bombs and fitting with a two-cloud model. Astrophys. J. 792(1). 13. P. 1—10.
https://doi.org/10.1088/0004-637X/792/1/13
44. Jafarzadeh S., Rouppe van der Voort L., de la Cruz Rodriguez J. (2015) Magnetic upflow events in the quiet-Sun photosphere. I. Observations. Astrophys. J. 810(1). 54. P. 1—12.
https://doi.org/10.1088/0004-637X/810/1/54
45. Keys P. H., Mathioudakis M., Jess D. B., et al. (2011) The velocity distribution of solar photospheric magnetic bright points. Astrophys. J. Lett. 740(2). L40. P. 1—5.
https://doi.org/10.1088/2041-8205/740/2/L40
46. Khomenko E. (2006) Diagnostics of quiet-Sun magnetism. Proc. Conf. Solar MHD Theory and Observations: A High Spatial Resolution Perspective, held 18-22 July, 2005 in Sacramento Peak, USA. Eds J. Leibacher, R. F. Stein, and H. Uitenbroek. ASP Conf. Series. 354. P. 63.
47. Khomenko E., Collados M., Felipe T. (2008) Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes. Solar Phys. 251(1-2). P. 589—611.
https://doi.org/10.1007/s11207-008-9133-8
48. Khomenko E., Vitas N., Collados M., de Vicente A. (2017) Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery. Astron. and Astrophys. 604(A66). P. 1—8.
https://doi.org/10.1051/0004-6361/201630291
49. Khomenko E., Vitas N., Collados M., de Vicente A. (2018) Three-dimensional simulations of solar magneto-convection including effects of partial ionization. Astron. and Astrophys. 618. P. A87.
https://doi.org/10.1051/0004-6361/201833048
50. Kitiashvili I. N. (2015) Radiative 3D MHD simulations of the spontaneous small-scale eruptions in the solar atmosphere. IAU General Assembly, Meeting 29. id. 2258477.
51. Kitiashvili I., Yoon S. (2014) Realistic modeling of spontaneous flow eruptions in the quiet Sun. AAS Meeting 224. id. 323.02.
52. Kostik R. I., Shchukina N. G., Rutten R. J. (1996) The solar iron abundance: not the last word. Astron. and Astrophys. 305. P. 325—342.
53. Kostyk R. I., Shchukina N. G., Khomenko E. V. (2006) Fine structure of wave motions in the solar photosphere: Observations and theory. Astron. Rep. 50(7). P. 588—600.
https://doi.org/10.1134/S1063772906070092
54. Lites B. W., Kubo M., Socas-Navarro H., et al. (2008) The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. Astrophys. J. 672(2). P. 1237—1253.
https://doi.org/10.1086/522922
55. Martínez Pillet V., Del Toro Iniesta J. C., Quintero Noda C. (2011) Ubiquitous quiet-Sun jets. Astron. and Astrophys. 530. A111. P. 1—6.
https://doi.org/10.1051/0004-6361/201015941
56. Mehltretter J. P. (1974) Observations of photospheric faculae at the center of the solar disk. Solar Phys. 38. P. 43—57.
https://doi.org/10.1007/BF00161822
57. Nagata S., Tsuneta S., Suematsu Y., et al. (2008) Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. Astrophys. J. Lett. 677(2). P. L145—L147.
https://doi.org/10.1086/588026
58. Narayan G. (2011) Transient downflows associated with the intensification of small-scale magnetic features and bright point formation. Astron. and Astrophys. 529(A79). P. 1—12.
https://doi.org/10.1051/0004-6361/201016016
59. Orozco Suárez D., Bellot Rubio L. R., del Toro Iniesta J. C., et al. (2007) Quiet-Sun internetwork magnetic fields from the inversion of Hinode measurements. Astrophys. J. 670(1). P. L61—L64.
https://doi.org/10.1086/524139
60. Panesar N. K., Sterling A. C., Moore R. L., Chakrapani P. (2016) Magnetic flux cancelation as the trigger of solar quiet-region coronal jets. Astrophys. J. Lett. 832(1). L7. P. 1—7.
https://doi.org/10.3847/2041-8205/832/1/L7
61. Pariat E., Aulanier G., Schmieder B., et al. (2004) Resistive emergence of undulatory flux tubes. Astrophys. J. 614(2). P. 1099—1112.
https://doi.org/10.1086/423891
62. Parker E. N. (1978) Hydraulic concentration of magnetic fields in the solar photosphere. VI. Adiabatic cooling and concentration in downdrafts. Astrophys. J. 221(1). P. 368—377.
https://doi.org/10.1086/156035
63. Peter H., Tian H., Curdt W., et al. (2014) Hot explosions in the cool atmosphere of the Sun. Science. 346(6207). 1255726. P. 1—30.
https://doi.org/10.1126/science.1255726
64. Piskunov N. E., Kupka F., Ryabchikova T. А., et al. (1995) VALD: The Vienna Atomic Line Data base. Astron. and Astrophys. Suppl. Ser. 112(3). P. 525—535.
65. Puschmann K. G., Ruiz Cobo B., Vázquez M., et al. (2005) Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures. Astron. and Astrophys. 441(3). P. 1157—1169.
https://doi.org/10.1051/0004-6361:20047193
66. Reid A., Mathioudakis M., Doyle J. G., et al. (2016) Magnetic flux cancellation in Ellerman bombs. Astrophys. J. 823(2). 110. P. 1—10.
https://doi.org/10.3847/0004-637X/823/2/110
67. Reid A., Mathioudakis M., Scullion E., et al. (2015) Ellerman bombs with jets: cause and effect. Astrophys. J. 805(1). 64. P. 1—9.
https://doi.org/10.1088/0004-637X/805/1/64
68. Requerey I. S., Del Toro Iniesta J. C., Bellot Rubio L. R., et al. (2014) The history of a quiet-Sun magnetic element revealed by IMaX/SUNRISE. Astrophys. J. 789(1). id. 6. 12 р.
https://doi.org/10.1088/0004-637X/789/1/6
69. Rouppe van der Voort L. H. M., Rutten R. J., Vissers G. J. M. (2016) Reconnection brightenings in the quiet solar photosphere. Astron. and Astrophys. 592(A100). P. 1—9.
https://doi.org/10.1051/0004-6361/201628889
70. Rubio da Costa F., Solanki S. K., Danilovic S., et al. (2015) Centre-to-limb properties of small, photospheric quiet-Sun jets. Astron. and Astrophys. 574. A95. P. 1—8.
https://doi.org/10.1051/0004-6361/201424880
71. Ruiz Cobo B., del Toro Iniesta J. C. Inversion of Stokes profiles. Astrophys. J. 1992. 398. № 1. P. 375—385.
https://doi.org/10.1086/171862
72. Rutten R. J. (2016) features with hot onsets. I. Ellerman bombs. Astron. and Astrophys. 590(A124). P. 1—13.
https://doi.org/10.1051/0004-6361/201526489
73. Rutten R. J., Rouppe van der Voort L. H. M., Vissers G. J. M. (2015) Ellerman bombs at high resolution. IV. Visibility in Na I and Mg I. Astrophys. J. 808(2). 133. P. 1—7.
https://doi.org/10.1088/0004-637X/808/2/133
74. Rutten R. J., Vissers G. J. M., Rouppe van der Voort L. H. M., Sütterlin P., Vitas N. (2013) Ellerman bombs: fallacies, fads, usage. J. Phys. Conf. Series. 440(1). id. 012007.
https://doi.org/10.1088/1742-6596/440/1/012007
75. Scharmer G. B., Bjelksjö K., Korhonen T. K., Lindberg B., Petterson B. (2003) The 1-meter Swedish solar telescope. Innovative Telescopes and Instrumentation for Solar Astrophysics. Eds S. L. Keil, S. V. Avakyan. Proc. SPIE. 4853. P. 341—350.
https://doi.org/10.1117/12.460377
76. Scharmer G. B., Narayan G., Hillberg T., et al. (2008) CRISP spectropolarimetric imaging of penumbral fine structure. Astrophys. J. Lett. 689(1). P. L69—L72.
https://doi.org/10.1086/595744
77. Schüssler M. (1990) Theoretical aspects of small-scale photospheric magnetic fields. Solar Photosphere: Structure, Convection, and Magnetic Fields. Eds R. J. Rutten, G. Severino. Dordrecht: Kluwer. P. 161—179.
https://doi.org/10.1007/978-94-009-1061-4_18
78. Schüssler M. (1992) Small-scale photospheric magnetic fields. — The Sun: a laboratory for astrophysics, Proceedings of the NATO Advanced Study Institute, held in Crieff, Scotland. Dordrecht: Reidel, Eds J. T. Schmelz, J. C. Brown. NATO Advanced Science Institutes (ASI) Series C, Volume 373, P. 191.
https://doi.org/10.1007/978-94-011-2765-3_9
79. Shchukina N., Trujillo Bueno J. (2001) The Iron line formation problem in three-dimensional hydrodynamic models of Solar-like photospheres. Astrophys. J. 550(2). P. 970—990.
https://doi.org/10.1086/319789
80. Sheminova V. A., Gadun A. S. (2000) Evolution of solar magnetic tubes from observations of Stokes parameters. Astron. Rep. 44. P. 701—710.
https://doi.org/10.1134/1.1312967
81. Socas-Navarro H., Manso Sainz R. (2005) Shocks in the quiet solar photosphere: a rather common occurrence. Astrophys. J. 620(1). P. L71—L74.
https://doi.org/10.1086/428397
82. Solanki S. K. (1993) Smallscale solar magnetic fields - an overview. Space Sci. Rev. 63(1-2). P. 1—188.
https://doi.org/10.1007/BF00749277
83. Solanki S. K. (2009) Photospheric magnetic field: quiet Sun. Proc. Conf. Solar Polarization 5: In Honor of Jan Stenflo, held 17—21 September, 2007, Ascona, Switzerland. Eds S. V. Berdyugina, K. N. Nagendra, R. Ramelli. ASP Conf. Series. 405. P. 135.
84. Spruit H. C. (1979) Convective collapse of flux tubes. Solar Phys. 61. P. 363—378.
https://doi.org/10.1007/BF00150420
85. Steiner O., Grossmann-Doerth U., Knölker M., Schüssler M. (1998) Dynamical interaction of solar magnetic elements and granular convection: results of a numerical simulation. Astrophys. J. 495(1). P. 468—484.
https://doi.org/10.1086/305255
86. Stenflo J. O. (1989) Small-scale magnetic structures on the Sun. Astron. and Astrophys. Rev. 1. P. 3—48.
https://doi.org/10.1007/BF00872483
87. Stenflo J. O. (2011) Magnetic fields on the quiet Sun. Cent. Eur. Astrophys. Bull. P. 1—18.
88. Suematsu Y., Tsuneta S., Ichimoto K., et al. (2008) The Solar Optical Telescope of Solar-B (Hinode): The optical telescope assembly. Solar Phys. 249(2). P. 197— 220.
https://doi.org/10.1007/s11207-008-9129-4
89. Takeuchi A. (1999) Properties of convective instability in a vertical photospheric magnetic flux tube. Astrophys. J. 522(1). P. 518—523.
https://doi.org/10.1086/307626
90. Trujillo Bueno J., Shchukina N. G., Asensio Ramos A. (2004) A substantial amount of hidden magnetic energy in the quiet Sun. Nature. 430(6997). P. 326—329.
https://doi.org/10.1038/nature02669
91. Tsuneta S., Ichimoto K., Katsukawa Y., et al. (2008) The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249(2). P. 167—196.
https://doi.org/10.1007/s11207-008-9174-z
92. Utz D., Jurčák J., Hanslmeier A., et al. (2013) Magnetic field strength distribution of magnetic bright points inferred from filtergrams and spectro-polarimetric data. Astron. and Astrophys. 554(A65). P. 1—12.
https://doi.org/10.1051/0004-6361/201116894
93. Utz D., van Doorsselaere T., Magyar N., et al. (2017) P-mode induced convective collapse in vertical expanding magnetic flux tubes? Fine Structure and Dynamics of the Solar Atmosphere, Proceedings of the International Astronomical Union, IAU Symposium. V. 327. P. 86—93.
https://doi.org/10.1017/S174392131700401X
94. Vargas Domínguez S., Palacios J., Balmaceda L., et al. (2015) Evolution of small-scale magnetic elements in the vicinity of granular-sized swirl convective motions. Solar Phys. 290(2). P. 301—319.
https://doi.org/10.1007/s11207-014-0626-3
95. Vissers G. J. M., Rouppe van der Voort L. H. M., Rutten R. J. (2013) Ellerman bombs at high resolution. II. Triggering, visibility, and effect on upper atmosphere. Astrophys. J. 774. P. 32—46.
https://doi.org/10.1088/0004-637X/774/1/32
96. Vissers G. J. M., Rouppe van der Voort L. H. M., Rutten R. J., et al. (2015) Ellerman bombs at high resolution. III. Simultaneous observations with IRIS and SST. Astrophys. J. 812(1). 11. P. 1—18.
https://doi.org/10.1088/0004-637X/812/1/11
97. Vögler A., Shelyag S., Schüssler M., et al. (2005) Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. and Astrophys. 429. P. 335—351.
https://doi.org/10.1051/0004-6361:20041507
98. Watanabe H., Kitai R., Okamoto K., et al. (2008) Spectropolarimetric observation of an emerging flux region: triggering mechanisms of Ellerman bombs. Astrophys. J. 684(1). P. 736—746.
https://doi.org/10.1086/590234
99. Wiehr E., Bovelet B., Hirzberger J. (2004) Brightness and size of small-scale solar magnetic flux concentrations. Astron. and Astrophys. 422. P. L63—L66.
https://doi.org/10.1051/0004-6361:200400019
100. Yelles Chaouche L., Solanki S. K., Schüssler M. (2009) Comparison of the thin flux tube approximation with 3D MHD simulations. Astron. and Astrophys. 504(2). P. 595—603.
https://doi.org/10.1051/0004-6361/200912390
101. Young P. R. (2015) Dark jets in solar coronal holes. Astrophys. J. 801(2). 124. P. 1—9.
https://doi.org/10.1088/0004-637X/801/2/124
102. Yurchyshyn V. B., Goode P. R., Abramenko V. I., Steiner O. (2011) On the origin of intergranular jets. Astrophys. J. Lett. 736(2). L35. P. 1—6.
https://doi.org/10.1088/2041-8205/736/2/L35
103. Zachariadis Th. G., Alissandrakis C. E., Banos G. (1987) Observations of Ellerman bombs in . Solar Phys. 108(2). P. 227—236.
https://doi.org/10.1007/BF00214163