Properties of star-forming galaxies in mid-infrared range from the data obtained with the space telescope WISE
1Izotova, IY, 2Izotov, YI 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 2Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(6):5-17 |
https://doi.org/10.15407/kfnt2019.06.005 |
Start Page: Extragalactic Astronomy |
Language: Russian |
Abstract: We study photometric properties in the mid-infrared range of a sample of compact star-forming galaxies from the Data Release 14 of the SDSS. The sample includes about 30000 galaxies. The emist ion lines Hβ with equivafent widths EW(Hβ) > 1 nm are observed in spectra of all selected galaxfes. Sefected galaxfes are compact objects with anguf ar diameters less than 6 arcsec. About 10000 galaxies were detected by the space telescope WISE at wavelengths 3.4 and 4.6 pm. Considerable number of galaxies was also detected at wavelengths 12 and 22 pm. Using these data and the results of observations obtained in the ultraviolet range with the space telescope GALEX it was shown that the dust heating in the sample galaxies is caused by the ultraviolet radiation of massive stars in star-forming regions. The stellar and ionized gas emission dominates at wavelengths 3.4 and 4.6 pm in majority of galaxies whereas the dust emission dominates at wavelengths 12 and 22 pm. In some galaxies with high Hβ luminosity dust emission is observed even at the wavelength 3.4 pm, and it has a steep increase of the intensity toward the wavetength 4.6 pm. This emission is characterized by red color (W1 - W2 > 2m), where W1 and W2 are magnitudes at wavet engths 3.4 and 4.6 pm, respectively. The probable cause of this emission is the presence of hot dust with a temperature of hundreds Kelvins. We present the list of 39 galaxies with such an extremely high red color W1 - W2. |
Keywords: dwarf star-forming galaxies, H II regions, infrared radiation, interstellar dust |
1.Abolfathi B., Aguado D. S., Aguilar G., et al. (2018) The fourteenth data release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophys. J.Suppl. Ser. 235(42). 19 p.
2.Cardamone C., Schawinski K., Sarzi M., et al. (2009) Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 399. 1191—1205.
https://doi.org/10.1111/j.1365-2966.2009.15383.x
3.Chiaki G., Schneider R., Nozawa T., Omukai K., Limongi M., Yoshida N., Chieffi A. (2014) Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927. Mon. Notic. Roy. Astron. Soc. 439. 3121—3127.
https://doi.org/10.1093/mnras/stu178
4.Dole H., Lagache G., Puget J.-L., et al. (2006) The cosmic infrared background resolved by Spitzer. Contributions of mid-infrared galaxies to the far-infrared background. Astron. and Astrophys. 451. 417—429.
https://doi.org/10.1051/0004-6361:20054446
5.Elbaz D., Cesarsky C. J., Chanial P., et al. (2002) The bulk of the cosmic infrared background resolved by ISOCAM. Astron. and Astrophys. 384. 848—865.
https://doi.org/10.1051/0004-6361:20020106
6.Engelbracht C. W., Gordon K. D., Rieke G. H., et al. (2005) Metallicity effects on mid-infrared colors and the 8 mu m PAH emission in galaxies. Astrophys. J. 628. L29—L32.
https://doi.org/10.1086/432613
7.Engelbracht C. W., Rieke G. H., Gordon K. D., et al. (2008) Metallicity effects on dust properties in starbursting galaxies. Astrophys. J. 678. 804—827.
https://doi.org/10.1086/529513
8.Frayer D. T., Fadda D., Yan L., et al. (2006) Spitzer 70 and 160 |j.m observations of the extragalactic first look survey. Astron. J. 131. 250—260.
9.Griffith R. L., Tsai C.-W., Stern D., et al. (2011) WISE discovery of low-metallicity blue compact dwarf galaxies. Astrophys. J. 736(L22). 5 p.
https://doi.org/10.1088/2041-8205/736/1/L22
10.Hauser M. G., Dwek E. (2001) The cosmic infrared background: Measurements and implications. Ann. Rev. Astron. Astrophys. 39. 249—307.
https://doi.org/10.1146/annurev.astro.39.1.249
11.Hunt L. K., Thuan T. X., Izotov Y. I., Sauvage M. (2010) The Spitzer view of low-metallicity star formation. III. Fine-structure lines, aromatic features, and molecules. Astrophys. J. 712. 164—187.
https://doi.org/10.1088/0004-637X/712/1/164
12.Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2011) Star-forming galaxies with hot dust emission in the Sloan Digital Sky Survey discovered by the Wide-field Infrared Survey Explorer (WISE). Astron. and Astrophys. 536(L7). 4 p.
https://doi.org/10.1051/0004-6361/201118402
13.Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2014) Multi-wavelength study of 14 000 star-formtng gal axt es from the Sloan Digital Sky Survey. Astron. and Astrophys. 561(33). 30 p.
https://doi.org/10.1051/0004-6361/201322338
14.Izotov Y. I., Guseva N. G., Fricke K. J., et al. (2014) Dust emission in star-forming dwarf galaxies: General properties and the nature of the submm excess. Astron. and Astrophys. 570(97). 21 p.
https://doi.org/10.1051/0004-6361/201423539
15.Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2019) Low-redshift lowest-metallicity star-formtng galaxies in the SDSS DR14. Astron. and Astrophys. 623(40). 11 p.
https://doi.org/10.1051/0004-6361/201834768
16.Izotov Y. I., Guseva N. G., Thuan T. X. (2011) Green Pea galaxies and Cohorts: Luminous compact emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 728(161). 16 p.
https://doi.org/10.1088/0004-637X/728/2/161
17.Izotov Y. I., Thuan T. X. (2007) MMT Observations of New extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 665. 1115—1128.
https://doi.org/10.1086/519922
18.Nozawa T., Kozasa T., Umeda H., et al. (2003) Dust in the early universe: Dust formation in the ejecta of population III supernovae. Astrophys. J. 598. 785—803.
https://doi.org/10.1086/379011
19.Remy-Ruyer A., Madden S. C., Galliano F., et al. (2013) Revealing the cold dust in low-metallicity environments. I. Photometry analysis of the Dwarf Galaxy Survey with Herschel. Astron. and Astrophys. 557(95), 32 p.
https://doi.org/10.1051/0004-6361/201321602
20.Remy-Ruyer A., Madden S. C., Galliano F., et al. (2014) Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range. Astron. and Astrophys. 563(31), 22 p.
https://doi.org/10.1051/0004-6361/201322803
21.Schneider D. P., Richards G. T., Hall P. B., et al. (2010) The Sloan Digital Sky Survey Quasar Catalog. V. Seventh Data Release. Astron. J. 139. 2360.
22.Schneider R., Omukai K., Bianchi S., Valiante R. (2012) The first low-mass stars: critical metallicity or dust-to-gas ratio? 2012, Mon. Notic. Roy. Astron. Soc. 419. 1566—1575.
https://doi.org/10.1111/j.1365-2966.2011.19818.x
23.Wright E. L., Eisenhardt P. R. M., Mainzer, A. K., et al. (2010) The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 140. 1868—1881.
24.Wu Y., Charmandaris V., Hao L., et al. (2006) Mid-infrared properties of low-metallicity blue compact dwarf galaxies from the Spitzer infrared spectrograph. Astrophys. J. 639. 157—172.
https://doi.org/10.1086/499226
25.Wu Y., Charmandaris V., Hunt L. K., et al. (2007) Dust in the extremely metal-poor blue compact dwarf galaxy I Zw 18: The Spitzer mid-infrared view. Astrophys. J. 662. 952—958.
https://doi.org/10.1086/517988