Diagnostics of the velocity field of the quiet Sun using the lambda-meter method: the Si I λ 1082.7 nm line

Heading: 
1Shchukina, NG, 1Kostyk, RI
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(1):3-23
https://doi.org/10.15407/kfnt2020.01.003
Start Page: Solar Physics
Language: Ukrainian
Abstract: 

The validity of the lambda-meter method for determing the quiet Sun velocity field using the Si I λ 1082.7 nm line is investigated. To this end, the intensity profiles of this line were calculated for the solar disk center by means of NLTE radiative transfer calculations in a three-dimensional snapshot model atmosphere taken from a magneto-convection simulation of the small-scale magnetic activity in the quiet solar photosphere. Theoretical NLTE profiles of the Si I λ 1082.7 nm line were degraded because of the Earth’s at¬mo¬spheric turbulence and light diffraction by apertures of the telescopes like VTT, GREGOR, and EST/DKIST.The velocity field, retreived from spatially unsmeared profiles and the profiles smeared to the resolution of ground-based observations, was compared with the velocity field of the given snapsot model atmosphere. It is shown that in the case of observations of the Si I λ 1082.7 nm line on large-diameter telescopes like GREGOR and EST/DKIST with a spatial resolution substantially better than 0.27 arsec, the lambda-meter method provides reliable values of the velocity field for the lower and upper solar photosphere. For the middle photosphere correlation between the inferred and the real velocities is worse particularly when using the smaller diameter telescopes similar to VTT. At a poor spatial resolution, exceeding 2 arcsec, information about the velocity field can be obtained only for the uppermost photospheric layers. For this case, the lambda-meter velocities turn out to be noticeably smaller than the real ones.

Keywords: formation — techniques, granulation — line, photosphere, spectroscopic — magnetohydrodynamics — radiative transfer
References: 

1. I. N. Atroshchenko, A. S. Gadun, S. I. Gopasyuk, E. A. Gurtovenko, A. A. Kmito, E. V. Kononovich, R. I. Kostyk, et al., Variations of Global Characteristics of the Sun (Naukova Dumka, Kyiv, 1991) [in Russian].

2. L. Auer, P. Fabiani Bendicho, and J. Trujillo Bueno. Multidimensional radiative transfer with multilevel atoms: I. ALI method with preconditioning of the rate equations, Astron. Astrophys. 292, 599–615 (1994).

3. H. Balthasar, P. Gömöry, S. J. González Manrique, C. Kuckein, A. Kučera, et al. Spectropolarimetric observations of an arch filament system with GREGOR (2018). https://ui.adsabs.harvard.edu. arXiv 1804.01789vl [astro-ph.SR]

4. S. Bard and M. Carlsson. Constructing computationally tractable models of Si I for the 1082.7 nm transition, Astrophys. J. 682, 1376–1385 (2008).
https://doi.org/10.1086/589910

5. D. Sh. Bloomfield, A. Lagg, and S. K. Solanki. The nature of running penumbral waves revealed, Astrophys. J. 671, 1005–1012 (2007).
https://doi.org/10.1086/523266

6. R. Centeno, M. Collados, and J. Trujillo Bueno. Spectropolarimetric investigation of the propagation of magnetoacoustic waves and shock formation in sunspot atmospheres, Astrophys. J. 640, 1153–1162 (2006).
https://doi.org/10.1086/500185

7. R. Centeno, M. Collados, and J. Trujillo Bueno. Wave propagation and shock formation in different magnetic structures, Astrophys. J. 692, 1211–1220 (2009).
https://doi.org/10.1088/0004-637X/692/2/1211

8. R. Centeno, J. Trujillo Bueno, H. Uitenbroek, and M. Collados. The influence of coronal EUV irradiance on the emission in the He I 10830 Å and D3 multiplets, Astrophys. J. 677, 742–750 (2008).
https://doi.org/10.1086/528680

9. M. Collados, R. López, E. Páez, E. Hernández, M. Reyes, et al. GRIS: The GREGOR Infrared Spectrograph, Astron. Nachr. 333, 872–879 (2012).
https://doi.org/10.1002/asna.201211738

10. T. del Pino Alemán, J. Stěpán, J. Trujillo Bueno, and N. Shchukina. A novel investigation of the small-scale magnetic activity of the quiet Sun via the Hanle effect in the Sr 14607 Å line, Astrophys. J. 863, 164–183 (2018).
https://doi.org/10.3847/1538-4357/aaceab

11. T. Felipe, M. Collados, E. Khomenko, C. Kuckein, A. Asensio Ramos, H. Balthasar, T. Berkefeld, C. Denker, A. Feller, M. Franz, et al. Three-dimensional structure of a sunspot light bridge, Astron. Astrophys. 596, A59–A71 (2016).
https://doi.org/10.1051/0004-6361/201629586

12. T. Felipe, E. Khomenko, and M. Collados. Magneto-acoustic waves in sunspots: First results from a new three-dimensional nonlinear magnetohydrodynamic code, Astrophys. J. 719, 357–377 (2010).
https://doi.org/10.1088/0004-637X/719/1/357

13. T. Felipe, E. Khomenko, M. Collados, and C. Beck. Multi-layer study of wave propagation in sunspots, Astrop-hys. J. 722, 131–144 (2010).
https://doi.org/10.1088/0004-637X/722/1/131

14. D. L. Fried. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures, J. Opt. Soc. Am. 56, 1372–1379 (1966).
https://doi.org/10.1364/JOSA.56.001372

15. J. Joshi, A. Lagg, S. K. Solanki, A. Feller, M. Collados, D. Orozco Suárez, R. Schlichenmaier, M. Franz, H. Balthasar, Denker C, et al. Upper chromospheric magnetic field of a sunspot penumbra: Observations of fine structure, Astron. Astrophys. 596, A8–A15 (2016).
https://doi.org/10.1051/0004-6361/201629214

16. J. Jurčák, M. Collados, J. Leenaarts, M. van Noort, and R. Schlichenmaier. Recent advancements in the EST project. 2019, Adv. Space Res. 63, 1389–1395 (2019).
https://doi.org/10.1016/j.asr.2018.06.034

17. S. L. Keil, T. R. Rimmele, J. Wagner, D. Elmore, and ATST Team. ATST: the largest polarimeter, in Proc. 6th Solar Polarization Conf., Sheraton Lahaina, Maui, HI, May 30 – June 4,2010, Ed. by J. R. Kuhn, D. M. Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno, S. L. Keil, and T. Rimmele (ASP, San Francisco, CA, 2011), in Ser.: ASP Conference Series, Vol. 437, pp. 319–328.

18. E. Khomenko and M. Collados. Oscillations and waves in sunspots, Living Rev. Sol. Phys. 12 (6), 1–78 (2015).
https://doi.org/10.1007/lrsp-2015-6

19. E. V. Khomenko, R. I. Kostik, and N. G. Shchukina. Five-minute oscillations above granules and intergranular lanes, Astron. Astrophys. 369, 660–671 (2001).
https://doi.org/10.1051/0004-6361:20010129

20. D. Korff. Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence, J. Opt. Soc. Am. 63, 971–980 (1973).
https://doi.org/10.1364/JOSA.63.000971

21. R. I. Kostik and E. V. Khomenko. Observations of a bright plume in solar granulation, Astron. Astrophys. 476, 341–347 (2007).
https://doi.org/10.1051/0004-6361:20077163

22. R. Kostik, E. Khomenko, and N. Shchukina. Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line, Astron. Astrophys. 506, 1405–1414 (2009).
https://doi.org/10.1051/0004-6361/200912441

23. R. I. Kostyk and N. G. Shchukina. Fine structure of convective motions in the solar photosphere: Observations and theory, Sov. Astron. 48, 769–780 (2004).
https://doi.org/10.1134/1.1800177

24. J. Koza. Sensitivity of selected Ba II, Fe I, Fe II, and Cr I spectral lines to velocity in quiet solar atmosphere, Sol. Phys. 266, 261–275 (2010).
https://doi.org/10.1007/s11207-010-9622-4

25. C. Kuckein, V. Martínez Pille, and R. Centeno. An active region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities, Astron. Astrophys. 542, A112–A125 (2012).
https://doi.org/10.1051/0004-6361/201218887

26. J. L. Kulander and J. T. Jefferies. Inference of velocities from line asymmetries, Astrophys. J. 146, 194–206 (1966).
https://doi.org/10.1086/148868

27. A. Lagg, B. Lites, J. Harvey, S. Gosain, and R. Centeno. Measurements of photospheric and chromospheric magnetic fields, Space Sci. Revs. 210 (1–4), 37–76 (2017).
https://doi.org/10.1007/s11214-015-0219-y

28. E. Landi Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Kluwer, Dordrecht, 2004).
https://doi.org/10.1007/1-4020-2415-0

29. B. W. Lites, S. L. Keil, G. B. Scharmer, and A. A. Wyller. Steady flows in active regions observed with the He I 10830 Å line, Sol. Phys. 97, 35–49 (1985).
https://doi.org/10.1007/BF00152977

30. S. A. Matthews, M. Collados, M. Mathioudakis, and R. Erdelyi. The European Solar Telescope (EST), SPIE Conf. Ser. 9908, 990809–990817 (2016).
https://doi.org/10.1117/12.2234145

31. M. Rempel. Numerical simulations of quiet Sun magnetism: On the contribution from a small-scale dynamo, Astrophys. J. 789, 131–153 (2014).
https://doi.org/10.1088/0004-637X/789/2/132

32. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko. The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model, Astron. Astrophys. 506, 1393–1404 (2009).
https://doi.org/10.1051/0004-6361/200912048

33. N. Shchukina, A. Sukhorukov, and J. Trujillo Bueno. Non-LTE determination of the silicon abundance using a three-dimensional hydrodynamical model of the solar photosphere, Astrophys. J. 755, 176–184 (2012).
https://doi.org/10.1088/0004-637X/755/2/176

34. N. Shchukina, A. Sukhorukov, and J. Trujillo Bueno. A Si I atomic model for NLTE spectropolarimetric diagnostics of the 10 827 Å line, Astron. Astrophys. 603, A98–A113 (2017).
https://doi.org/10.1051/0004-6361/201630236

35. N. G. Shchukina and J. Trujillo Bueno. The diagnostic potential of the weak field approximation for investigating the quiet Sun magnetism: the Si I 10 827 Å line, Astron. Astrophys. 628, A47 (2019).
https://doi.org/10.1051/0004-6361/201935510

36. N. Shchukina and J. Trujillo Bueno. The impact of surface dynamo magnetic fields on the solar iron abundance, Astron. Astrophys. 579, A112–A124 (2015).
https://doi.org/10.1051/0004-6361/201425569

37. N. Shchukina and J. Trujillo Bueno. The iron line formation problem in three-dimensional hydrodynamic models of solar-like photospheres, Astrophys. J. 550, 970–990 (2001).
https://doi.org/10.1086/319789

38. D. Soltau, R. Volkmer, O. von der Lühe, and T. Berkefeld. Optical design of the new solar telescope GREGOR, Astron. Nachr. 333, 847–853 (2012).
https://doi.org/10.1002/asna.201211730

39. R. Stebbins and P. R. Goode. Waves in the solar photosphere, Sol. Phys. 110, 237–253 (1987).
https://doi.org/10.1007/BF00206421

40. A. V. Sukhorukov. Non-LTE formation of the Si I λ 1082.7 nm line in one- and three-dimensional models of the solar atmosphere, J. Phys. Stud. 16, 1903–1913 (2012).

41. A. V. Sukhorukov and N. G. Shchukina. NLTE formation of the solar silicon spectrum: Silicon abundance in one-dimensional models of the solar atmosphere, Kinematics Phys. Celestial Bodies. 28, 169–182 (2012).
https://doi.org/10.3103/S0884591312040071

42. A. Tritschler, T. R. Rimmele, S. Berukoff, R. Casini, J. R. Kuhn, H. Lin, M. P. Rast, J. P. McMullin, W. Schmidt, F. Wöger, and DKIST Team. Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun, Astron. Nachr. 337, 1064–1069 (2016).
https://doi.org/10.1002/asna.201612434

43. J. Trujillo Bueno. The generation and transfer of polarized radiation in stellar atmospheres, in Proc. Stellar Atmosphere Modeling, Tübingen, Germany, Apr. 8–12,2002, Ed. by I. Hubeny, D. Mihalas, and K. Werner (ASP, San Francisco, CA, 2003), in Ser.: ASP Conference Series, Vol. 288, pp. 551–582.