Morphology of the flare-productive active region NOAA 9087

Heading: 
1Chornogor, SN, 1Kondrashova, NN
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(3):69-90
https://doi.org/10.15407/kfnt2020.03.069
Start Page: Solar Physics
Language: Ukrainian
Abstract: 

Evolution and morphological properties of the active region NOAA 9087 have been analyzed using combination of data from space and ground-based observatories. The hard X-ray (HXR) and soft X-ray (SXR) data were obtained at the Yohkoh Telescopes (HXT and SXT) and Geostationary Operational Environmental Satellite (GOES). The full-disk magnetograms and EUV-images were provided by the Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) and Extreme ultraviolet Imaging Telescope (EIT). We used the -filtergrams from the Meudon spectroheliograph and white light images of Big Bear Solar Observatory (BBSO). Data on the radio emission flux at a frequency of 2.69 GHz was taken from the database of the World Data Center of the Learmonth Observatory (Australia). Active region (AR) studied was observed on the solar disk from 15th to 27th of July, 2000 and showed a complex multipolar magnetic field configuration. The high flare and surge activity was observed in the active region. According to Solar Geophysical Data (SGD) the 3N/M6.4 a long duration two-ribbon flare occurred 19 July 2000 and lasted 2.5 hours. The flare energy was released sequentially in different places of the AR. All the data show continuously evolving SXR, EUV and features during the flare. The HXR and the type III radio bursts were observed at the flare initial phase. A HXR coronal source was located along magnetic polarity inversion line of the active region. EUV loop structures show the observational evidence of a magnetic reconnection during the main phase of the flare. Postflare loops were observed in the 19.5 nm passband at the gradual phase as a manifestation of the EUV late phase. These extended loops connect the sites of primary and secondary of flare energy sources. An additional mechanism of energy transfer and heating existed in the main phase of the flare.

Keywords: active regions, magnetic reconnections, multi-wavelength observations, solar flares, Sun
References: 

1. V. G. Lozits’kii and M. I. Stodilka. Magnetic fields and thermodynamic conditions in the pre-peak phase of M6.4 / 3N solar flare, Visn. Kyiv. Nats. Univ. Im. T. Shevchenka. Astron. 59, 22–33 (2019).
https://doi.org/10.17721/BTSNUA.2019.59.20-29

2. B. Anwar, L. W. Acton, H. S. Hudson, et al. Rapid sunspot motion during a major solar flare, Sol. Phys. 147, 287–303 (1993).
https://doi.org/10.1007/BF00690719

3. A. Asai, T. Yokoyama, M. Shimojo, et al. Flare ribbon expansion and energy release rate, Astrophys. J. 611, 557–567 (2004).
https://doi.org/10.1086/422159

4. A. O. Benz. Flare observations, Living Rev. Sol. Phys. 5, 1 (2008).
https://doi.org/10.12942/lrsp-2008-1

5. Y. Bi, J. Yang, Y. Jiang, et al. The photospheric vortex flows during a solar flare, Astrophys. J. Lett. 849, L35 (2017).
https://doi.org/10.3847/2041-8213/aa960e

6. R. Chandra, B. Schmieder, C. H. Mandrini, et al. Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003, Sol. Phys. 269, 83–104 (2011).
https://doi.org/10.1007/s11207-010-9670-9

7. R. Chandra, V. K. Verma, S. Rani, and R. A. Maurya. Multi-wavelength view of an M2.2 solar flare on 26 November 2000, New Astron. 51, 105–112 (2017).
https://doi.org/10.1016/j.newast.2016.08.012

8. X. Chen, Y. Yan, B. Tan, et al. Quasi-periodic pulsations before and during a solar flare in AR 12242, Astrophys. J. 878, 78 (2019).
https://doi.org/10.3847/1538-4357/ab1d64

9. G. Chintzoglou, J. Zhang, M. C. M. Cheung, and M. Kazachenko. The origin of major solar activity: Collisional shearing between nonconjugated polarities of multiple bipoles emerging within active regions, Astrophys. J. 871, 67 (2019).
https://doi.org/10.3847/1538-4357/aaef30

10. Y. Dai, M. D. Ding, and Y. Guo. Production of the extreme-ultraviolet late phase of an X class flare in a three-stage magnetic reconnection process, Astrophys. J., Lett. 773, L21 (2013).
https://doi.org/10.1088/0004-637X/773/1/21

11. Y. Dai, M. Ding, W. Zong, and K. E. Yang. Extremely large extreme-ultraviolet late phase powered by intense early heating in a non-eruptive solar flare, Astrophys. J. 863, 124 (2018).
https://doi.org/10.3847/1538-4357/aad32e

12. P. Demoulin. Extending the concept of separatrices to QSLs for magnetic reconnection, Adv. Space Res. 37, 1269–1282 (2006).
https://doi.org/10.1016/j.asr.2005.03.085

13. N. Deng, C. Liu, G. Yang, et al. Rapid penumbral decay associated with an X2.3 flare in NOAA active region 9026, Astrophys. J. 623, 1195–1201 (2005).
https://doi.org/10.1086/428821

14. M. D. Ding, Q. R. Chen, J. P. Li, and P. F. Chen. H-alpha and hard X-Ray observations of a two-ribbon flare associated with a filament eruption, Astrophys. J. 598, 683–688 (2003).
https://doi.org/10.1086/378877

15. B. N. Dwivedi, A. K. Srivastava, M. Kumar, and P. Kumar. A multiwavelength study of an M-class flare and the origin of an associated eruption from NOAA AR 11045, New Astron. 17, 542–551 (2012).
https://doi.org/10.1016/j.newast.2011.10.004

16. C. Fang, Y. H. Tang, J.-C. Henoux, et al. Multi-wavelength analysis of the flare on 2 October 1993, Sol. Phys. 182, 163–177 (1998).
https://doi.org/10.1023/A:1005033713559

17. M. Hahn, S. Gaard, P. Jibben, et al. Spatial relationship between twist in active region magnetic fields and solar flares, Astrophys. J. 629, 1135–1140 (2005).
https://doi.org/10.1086/431893

18. H. S. Hudson. Differential emission-measure variations and the "Neupert effect, Bull. Am. Astron. Soc. 23, 1064 (1991).

19. B. Joshi, A. Veronig, K.-S. Cho, et al. Magnetic reconnection during the two-phase evolution of a solar eruptive flare, Astrophys. J. 706, 1438–1450 (2009).
https://doi.org/10.1088/0004-637X/706/2/1438

20. M. D. Kazachenko, B. J. Lynch, B. T. Welsch, and X. Sun. A database of flare ribbon properties from the Solar Dynamics Observatory. I. Reconnection flux, Astrophys. J. 845, 49 (2017).
https://doi.org/10.3847/1538-4357/aa7ed6

21. B. Kliem, M. Karlický, and A. O. Benz. Solar flare radio pulsations as a signature of dynamic magnetic reconnection, Astron. Astrophys. 360, 715–728 (2000).

22. T. Kosugi, K. Makishima, T. Murakami, et al. The Hard X-ray Telescope (HXT) for the SOLAR-A mission, Sol. Phys. 136, 17–36 (1991).
https://doi.org/10.1007/BF00151693

23. A. Kulinová, E. Dzifčáková, R. Bujňák, and M. Karlický. Multi-wavelength analysis of the 29 September 2002 M2.6/2N flare, Sol. Phys. 221, 101–119 (2004).
https://doi.org/10.1023/B:SOLA.0000033369.71919.3d

24. P. Kumar, A. K. Srivastava, B. Filippov, and W. Uddin. Multiwavelength study of the M8.9/3B solar flare from AR NOAA 10960, Sol. Phys. 266, 39–58 (2010).
https://doi.org/10.1007/s11207-010-9586-4

25. E. V. Kurochka and V. G. Lozitsky. Magnetic fields and thermodynamical conditions in the M6.4/3N solar flare on July 19, 2000, Kinematics Phys. Celestial Bodies, Suppl. 5, 143–145 (2005).

26. E. V. Kurochka, V. G. Lozitsky, and O. B. Osyka. Temporary changes of physical conditions in photospheric layers of a solar flare, Kinematics Phys. Celestial Bodies 24, 308–320 (2008).
https://doi.org/10.3103/S0884591308040053

27. J.-Y. Lee, K. D. Leka, G. Barnes, et al. Evolution of magnetic properties for two active regions observed by Hinode/XRT and TRACE, in Proc. 2nd Hinode Science Meeting: Beyond Discovery-Toward Understanding, Boulder, CO, Sept. 29 – Oct. 3,2008, Ed. by B. Lites, M. Cheung, T. Magara, J. Mariska, and K. Reeves (ASP, San Francisco, CA, 2009), in Ser.: ASP Conference Series, Vol. 415, p. 279.

28. H. Li. Magnetic field configurations leading to solar eruptions, in Proc. 1st Asia-Pacific Solar Physics Meeting, Bengaluru, India, Mar. 21–24,2011, Ed. by A. R. Choudhuri and D. Banerjee (Astron. Soc. India, Bengaluru, 2011), in Ser.: ASI Conference Series, Vol. 2, pp. 291–296.

29. H.-W. Li, R. Pallavicini, and C.-C. Cheng. The gradual and impulsive reconnection and the preheating of solar flares, Sol. Phys. 107, 271–282 (1987).
https://doi.org/10.1007/BF00152025

30. C. Liu, W. Cao, J. Chae, et al. Evolution of photospheric vector magnetic field associated with moving flare ribbons as seen by GST, Astrophys. J. 869, 21 (2018).
https://doi.org/10.3847/1538-4357/aaecd0

31. Y. Li, M. D. Ding, Y. Guo, and Y. Dai. On the nature of the extreme-ultraviolet late phase of solar flares, Astrophys. J. 793, 85 (2014).
https://doi.org/10.1088/0004-637X/793/2/85

32. Y. Li, J. C. Xue, M. D. Ding, et al. Spectroscopic observations of a current sheet in a solar flare, Astrophys. J., Lett. 853, L15 (2018).
https://doi.org/10.3847/1538-4357/aaf04e

33. M. L. Luoni, C. H. Mandrini, G. D. Cristiani, and P. Démoulin. The magnetic field topology associated with two M flares, Adv. Space Res. 39, 1382–1388 (2007).
https://doi.org/10.1016/j.asr.2007.02.005

34. C. H. Mandrini, P. Demoulin, M. G. Rovira, et al. Constraints on flare models set by the active region magnetic topology. Magnetic topology of AR 6233, Astron. Astrophys. 303, 927–939 (1995).

35. S. K. Mathew and A. A. Ambastha. Rapidly evolving active region NOAA 8032 observed on April 15th 1997, J. Astron. Astrophys. 21, 233–236 (2000).
https://doi.org/10.1007/BF02702397

36. C. H. Miklenic, A. M. Veronig, and B. Vrsnak. Temporal comparison of nonthermal flare emission and magnetic-flux change rates, Astron. Astrophys. 499, 893–904 (2009).
https://doi.org/10.1051/0004-6361/200810947

37. J. Muhamad, K. Kusano, S. Inoue, and D. Shiota. Magnetohydrodynamic simulations for studying solar flare trigger mechanism, Astrophys. J. 842, 86 (2017).
https://doi.org/10.3847/1538-4357/aa750e

38. W. M. Neupert. Comparison of solar X-ray line emission with microwave emission during flares, Astrophys. J., Lett. 153, L59—L64 (1968).
https://doi.org/10.1086/180220

39. Y. Ogawara, T. Takano, T. Kato, et al. The Solar-A mission — An overview, Sol. Phys. 136, 1–16 (1991).
https://doi.org/10.1007/BF00151692

40. I. V. Oreshina and B. V. Somov. An indicator of the evolution of solar active regions towards conditions favourable for flare production, Cent. Eur. Astrophys. Bull. 33, 155–158 (2009).

41. I. V. Oreshina and B. V. Somov. Evolution of the photospheric magnetic field and coronal null points before solar flares, Astron. Lett. 35, 207–213 (2009).
https://doi.org/10.1134/S1063773709030074

42. S.-H. Park, J. Chae, and H. Wang. Productivity of solar flares and magnetic helicity injection in active regions, Astrophys. J. 718, 43–51 (2010).
https://doi.org/10.1088/0004-637X/718/1/43

43. E. R. Priest and T. G. Forbes. The magnetic nature of solar flares, Astron. Astrophys. Rev. 10, 313–377 (2002).
https://doi.org/10.1007/s001590100013

44. S. Regnier and R. C. Canfield. Evolution of magnetic fields and energetics of flares in active region 8210, Astron. Astrophys. 451, 319–330 (2006).
https://doi.org/10.1051/0004-6361:20054171

45. P. Romano and F. Zuccarello. Photospheric magnetic evolution of super active regions, Astron. Astrophys. 474, 633–637 (2007).
https://doi.org/10.1051/0004-6361:20078110

46. M. G. Rovira, S. Šimberová, M. Karlický, et al. Multiwavelength study of the May 13, 2005 flare event, in The Physics of Chromospheric Plasmas (Proc. Conf., Coimbra, Portugal, Oct. 9–13,2006), Ed. by P. Heinzel, I. Dorotovič, and R. J. Rutten (ASP, San Francisco, CA, 2007), in Ser.: ASP Conference Series, Vol. 368, pp. 461.

47. P. H. Scherrer, R. S. Bogart, and R. I. Bush. The solar oscillations investigation — Michelson Doppler Imager, Sol. Phys. 162, 129–188 (1995).
https://doi.org/10.1007/978-94-009-0191-9_5

48. B. V. Somov, T. Kosugi, H. S. Hudson, et al. Magnetic reconnection scenario of the Bastille Day 2000 flare, Astrophys. J. 579, 863–873 (2002).
https://doi.org/10.1086/342842

49. S. Toriumi, C. J. Schrijver, L. K. Harra, et al. Magnetic properties of solar active regions that govern large solar flares and eruptions, Astrophys. J. 834, 56 (2017).
https://doi.org/10.3847/1538-4357/834/1/56

50. S. Toriumi and H. Wang. Flare-productive active regions, Living Rev. Sol. Phys. 16, 3 (2019).
https://doi.org/10.1007/s41116-019-0019-7

51. A. M. Veronig and W. Polanec. Magnetic reconnection rates and energy release in a confined X-class flare, Sol. Phys. 290, 2923–2942 (2015).
https://doi.org/10.1007/s11207-015-0789-6

52. A. Veronig, B. Vrsnak, B. R. Dennis, et al. Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model, Astron. Astrophys. 392, 699–712 (2002).
https://doi.org/10.1051/0004-6361:20020947

53. H. Wang, Y. Yan, T. Sakurai, and M. Zhang. Topology of magnetic field and coronal heating in solar active regions — II. The role of quasi-separatrix layers, Sol. Phys. 197, 263–273 (2000).

54. R. Wang, Y. D. Liu, J. T. Hoeksema, et al. Roles of photospheric motions and flux emergence in the major solar eruption on 2017 September 6, Astrophys. J. 869, 90 (2018).
https://doi.org/10.3847/1538-4357/aaed48

55. S. Wang, C. Liu, R. Liu, et al. Response of the photospheric magnetic field to the X2.2 Flare on 2011 February 15, Astrophys. J., Lett. 745, L17 (2012).
https://doi.org/10.1088/0004-637X/745/1/17

56. T. N. Woods. Extreme ultraviolet late-phase flares: Before and during the Solar Dynamics Observatory Mission, Sol. Phys. 289, 3391–3401 (2014).
https://doi.org/10.1007/s11207-014-0483-0

57. T. N. Woods, R. Hock, F. Eparvier, et al. New solar extreme ultraviolet irradiance observations during flares, Astrophys. J. 739, 59 (2011).
https://doi.org/10.1088/0004-637X/739/2/59

58. Z. Zhou, X. Cheng, L. Liu, et al. Extreme-ultraviolet late phase caused by magnetic reconnection over quadrupolar magnetic configuration in a solar flare, Astrophys. J. 878, 46 (2019).
https://doi.org/10.3847/1538-4357/ab1d5c

59. Z. Xu, Y. Jiang, J. Yang, et al. Sudden penumbral reappearance and umbral motion induced by an M7.9 solar flare, Astrophys. J., Lett. 840, L21 (2017).
https://doi.org/10.3847/1538-4357/aa5df4

60. Z. Xu, J. Yang, K. Ji, et al. Magnetic field rearrangement in the photosphere driven by an M5.0 solar flare, Astrophys. J. 874, 134 (2019).
https://doi.org/10.3847/1538-4357/ab0a07