The line asymmetry in the spectra of the Sun and solar-type stars
1Sheminova, VA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(6):65-87 |
https://doi.org/10.15407/kfnt2020.06.065 |
Start Page: Physics of Stars and Interstellar Medium |
Language: Ukrainian |
Abstract: We have analysed the asymmetry of lines Fe I and Fe II in spectra of a solar flux using three FTS atlases and the HARPS atlas and also in spectra of 13 stars using observation data on the HARPS spectrograph. To reduce observation noise individual line bisectors of each star have been averaged. The obtained average bisectors in the stellar spectra are more or less similar to the shape C well known to the Sun. In stars with rotation velocities greater than 5 km/s the shape of the bisectors is more like /. The curvature and span of the bisectors increase with the temperature of the star. Our results confirm the known facts about strong influence of rotation velocity on the span and shape of bisectors. The average convective velocity was determined based on the span of the average bisector, which shows the largest difference between the velocity of cold falling and hot rising convective flows of the matter. It’s equal to -420 m/s for the Sun as a star. In stars, it grows from -150 to -700 m/s with an effective temperature of 4800 to 6200 K, respectively. For stars with greater surface gravity and greater metallicity, the average convective velocity decreases. It also decreases with star age and correlates with the velocity of micro and macroturbulent movements. The results of solar flux analysis showed that absolute wavelength scales in the atlases used coincide with an accuracy of about -10 m/s, except for the FTS-atlas of Hinkle et al., whose scale is shifted and depends on the wavelength. In the range from 450 to 650 nm, the scale shift of this atlas varies from -100 to -330 m/s, respectively, and it equals on average of 240 m/s. The resulting average star bisectors contain information about the fields of convective velocities and may be useful for hydrodynamic modeling of stellar atmospheres in order to study the characteristic features of surface convection. |
Keywords: granulation, line asymmetry, line profiles, solar-type stars, velocity field |
1. Allende Prieto C., Asplund M., Garcia Lopez R. J., Lambert D. L. (2002) Signatures of convection in the spectrum of Procyon: Fundamental parameters and iron abundance. Astrophys. J. 567. 544—565.
https://doi.org/10.1086/338248
2. Allende Prieto C., Garcia Lopez R. J. (1998) Fe I line shifts in the optical spectrum of the Sun. Astron. Astrophys. Suppl. 129. 41—44.
https://doi.org/10.1051/aas:1998173
3. Allende Prieto C., Garcia Lopez R.J., Lambert D. L., Gustafsson B. (1999) Spectroscopic observations of convective patterns in the atmospheres of metal-poor stars. Astrophys. J. 526. 991—1000.
https://doi.org/10.1086/308019
4. Allende Prieto C., Koesterke L., Ludwig H.-G., Freytag B., Caffau E. (2013) Convective line shifts for the GAIA RVS from the CIFIST 3D model atmosphere grid. Astron. and Astrophys. 550. id. A103, 13.
https://doi.org/10.1051/0004-6361/201220064
5. Asplund M., Nordlund A., Trampedach R., Allende Prieto C., Stein R. F. (2000) Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries. Astron. and Astrophys. 359. 729—742.
6. Atroshchenko I. N., Gadun A. S. (1994) Three-dimensional hydrodynamic models of solar granulation and their application to a spectral analysis problem. Astron. and Astrophys. 291. 635—656.
7. Balthasar H. (1984) Asymmetries and wavelengths of solar spectral lines and the solar rotation determined from Fourier-transform spectra. Solar Phys. 93. 219—241.
https://doi.org/10.1007/BF02270836
8. Baran O. A., Stodilka M. I. (2015) Convection structure in the solar photosphere at granulation and mesogranulation scales. Kinematics Phys. Celestial Bodies. 31(2). 65—72.
https://doi.org/10.3103/S0884591315020026
9. Beeck B., Cameron R. H., Reiners A., Schussler M. (2013) Three-dimensional simulations of near-surface convection in main-sequence stars. II. Properties of granulation and spectral lines. Astron. and Astrophys. 558. id.A49, 18.
https://doi.org/10.1051/0004-6361/201321345
10. Brandt P. N., Gadun A. S., Sheminova V. A. (1997) Absolute shifts of Fe I and Fe II lines in solar active regions (disk center). Kinematics Phys. Celestial Bodies. 13(5). 65—74.
11. Dravins D. (1987) Stellar granulation. II. Stellar photospheric line asymmetries. Astron. and Astrophys. 172. 211—224.
12. Dravins D. (1999) Stellar surface convection, line asymmetries, and wavelength shifts. ASP Conference Series, IAU Colloquium 170. Eds. J. B. Hearnshaw and C. D. 185. 268—276.
https://doi.org/10.1017/S0252921100048661
13. Dravins D. (2008) Ultimate information content in solar and stellar spectra. Photospheric line asymmetries and wavelength shifts. Astron. and Astrophys. 492. 199—213.
https://doi.org/10.1051/0004-6361:200810481
14. Dravins D., Lindegren L., Nordlund A. (1981) Solar granulation — influence of convection on spectral line asymmetries and wavelength shifts. Astron. and Astrophys. 96. 345—364.
15. Dravins D., Nordlund A. (1990) Stellar granulation. V. Synthetic spectral lines in disk-integrated starlight. Astron. and Astrophys. 228. 203—217.
16. Fontenla J. M., Avrett E. H., Loeser R. (1993) Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406. 319—345.
17. Gadun A. S., Sheminova V. A. (1988) SPANSAT: the Program for LTE Calculations of absorption line profiles in stellar atmospheres. Preprint No. ITF-88-87P (Institute for Theoretical Physics of the Ukrainian SSR Academy of Sciences, Kyiv).
18. Gray D. F. (1982) Observations of spectral line asymmetries and convective velocities in F, G and K stars. Astrophys. J. 255. 200—209.
https://doi.org/10.1086/159818
19. Gray D. F. (2005) Shapes of spectral line bisectors for cool stars. Publs Astron. Soc. Pacif. 117. 711—720.
https://doi.org/10.1086/430412
20. Gray D. F. (2018) Solar-flux line-broadening analysis. Astrophys. J. 857. Id. 139. 8.
https://doi.org/10.3847/1538-4357/aab8f2
21. Gray D.F., Nagel T. (1989) The granulation boundary in the H-R diagram. Astrophys. J. 341. 421—426.
https://doi.org/10.1086/167505
22. Gray D. F., Toner C. G. (1985) Inferred properties of stellar granulation. Astrophys. J. 97. 543—550.
https://doi.org/10.1086/131566
23. Gray D. F., Toner C. G. (1986) The remarkable spectral line asymmetries of F and G Ib supergiant stars. Publs Astron. Soc. Pacif. 98. 499—503.
24. Gurtovenko E. A., Sheminova V. A. (2015) Formation depths of Fraunhofer lines. eprint arXiv:1505.00975
25. Hamilton D., Lester J. B. (1999) A Technique for the study of stellar convection: The visible solar flux spectrum. Publs Astron. Soc. Pacif. 763. 1132—1143.
https://doi.org/10.1086/316421
26. Hinkle K., Wallace L. (2005) The spectrum of Arcturus from the infrared through the ultraviolet. in Astronomical Society of the Pacific Conference. Series. 336. Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, eds T. G. Barnes, F. N. Bash. 321 p.
27. Ivanyuk O. M., Jenkins J. S., Pavlenko Ya. V., et al. (2017) The metal-rich abundance pattern — spectroscopic properties and abundances for 107 main-sequence stars. Mon. Notic. Roy. Astron. Soc. 468. 4151—4169.
https://doi.org/10.1093/mnras/stx647
28. Jenkins J. S., Jones H. R. A., Gozdziewski K. (2009) First results from the Calan-Hertfordshire Extrasolar Planet Search: exoplanets and the discovery of an eccentric brown dwarf in the desert. Mon. Notic. Roy. Astron. Soc. 398. 911—917.
https://doi.org/10.1111/j.1365-2966.2009.15097.x
29. Kostik R. I., Orlova T. V. (1977) On the asymmetry of selected Fraunhofer lines. Solar Phys. 53. 353—358.
https://doi.org/10.1007/BF00160278
30. Kostyk R. I., Shchukina N. G. (2004) Fine structure of convective motions in the solar photosphere: Observations and theory. Astron. Repts. 48. 769—780.
https://doi.org/10.1134/1.1800177
31. Kurucz R. L., Furenlid I., Brault J., Testerman L. (1984) Solar flux atlas from 296 to 1300 nm. National Solar Observatory Atlas, Sunspot, New Mexico, National Solar Observatory.
32. Livingston W. C. (1983) Magnetic fields and convection — New observations. Solar and stellar magnetic fields: Origins and coronal effects. Proc. Symp., Zurich, Switzerland. 149—152.
https://doi.org/10.1007/978-94-009-7181-3_14
33. Molaro P., Esposito M., Monai S., Lo Curto G., et al. (2013) A frequency comb calibrated solar atlas. Astron. and Astrophys. 560. id. A61. 9.
https://doi.org/10.1051/0004-6361/201322324
34. Nave G., Johansson S., Learner R. C. M., Thorne A. P., Brault J. W. (1994) A new multiplet table for Fe I. Astrophys. J. Suppl. 94. 221.
https://doi.org/10.1086/192079
35. Neckel H. (1999) Announcement spectral atlas of solar absolute disk-averaged and disk-center intensity from 3290 to 12510 A (Brault and Neckel, 1987). Solar Phys. 184. 421—422.
https://doi.org/10.1023/A:1017165208013
36. Pavlenko Y. V., Kaminsky B. M., Jenkins J. S., Ivanyuk O. M., Jones H. R. A., Lyubchik Y. P. (2019) Masses, oxygen, and carbon abundances in CHEPS dwarf stars. Astron. and Astrophys. 621. id. A112. 13.
https://doi.org/10.1051/0004-6361/201834138
37. Quintero Noda C., Uitenbroek H., Carlsson M., Orozco Suarez D., Katsukawa Y., et al. (2018) Study of the polarization produced by the Zeeman effect in the solar Mg I b lines. Mon. Notic. Roy. Astron. Soc. 481. 5675—5686.
https://doi.org/10.1093/mnras/sty2685
38. Ramirez I., Allende Prieto C., Koesterke L., Lambert D. L., Asplund M. (2009) Granulation in K-type dwarf stars. II. Hydrodynamic simulations and 3D spectrum synthesis. Astron. and Astrophys. 501. 1087—1101.
https://doi.org/10.1051/0004-6361/200911741
39. Ramirez I., Allende Prieto C., Lambert D. L. (2008) Granulation in K-type dwarf stars. I. Spectroscopic observations. Astron. and Astrophys. 492. 841—855.
https://doi.org/10.1051/0004-6361:200810901
40. Reiners A., Mrotzek N., Lemke U., Hinrichs J., Reinsch K. (2016) The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra. Astron. and Astrophys. 587. id. A65. 8.
https://doi.org/10.1051/0004-6361/201527530
41. Rutten R. J., Leenaarts J., Rouppe van der Voort L. H. M., de Wijn A. G., Carlsson M., Hansteen V. (2011) Quiet-Sun imaging asymmetries in Na I D1 compared with other strong Fraunhofer lines. Astron. and Astrophys. 531. id. A17. 16.
https://doi.org/10.1051/0004-6361/201116984
42. Sheminova V. A. (2019) Turbulence and Rotation in Solar-Type Stars. Kinematics Phys. Celestial Bodies. 35. 3. 129—142.
https://doi.org/10.3103/S088459131903005X
43. Sheminova V. A., Gadun A. S. (2002) Convective shifts of iron lines in the solar photosphere. Kinematics Phys. Celestial Bodies. 18. № 1. 12—21.
44. Wallace L., Hinkle K. H., Livingston W. C., Davis S. P. (2011) An optical and near-infrared (2958—9250 A) solar flux atlas. Astrophys. J. Suppl. 1. id. 6. 8.
https://doi.org/10.1088/0067-0049/195/1/6