Compact galaxies with active star formation from SDSS DR14: star formation rates derived from combinations of luminosities in different wavelength ranges

1Izotova, IY, 2Izotov, YI
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(2):3-18
https://doi.org/10.15407/kfnt2021.02.003
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

Physical characteristics of large sample of compact galaxies with active star formation from the SDSS DR14 are derived. The sample includes about 30000 compact isolated galaxies with angular diameters ≤ 6". The emission lines Hβ with equivalent widths EW(Hβ) ≥ 1 nm are observed in the spectra of selected galaxies. The stellar masses of compact galaxies are distributed in the wide range from 105M☉ to 1011M☉ with a maximum at ~109M☉. The oxygen abundances for the bulk of compact galaxies are distributed in the range 7.8...8.2 with a maximum at ~8.05. Compact galaxies are characterized with high specific star formation rates of 10...100 Gyr–1. The SDSS spectroscopic data were supplemented by photometric data in the far- and near-ultraviolet ranges from the GALEX and in the mid-infrared range at 22 μm from the WISE all-sky surveys. We determine the star formation rate, concisely named “composite” one, using combinations of two out of five observed luminosities: luminosity L(Hα) in the emission line Hα, monochromatic luminosities in the ultraviolet continuum L(FUV) and L(NUV) and in the mid-infrared continuum L(22 μm), as well as the total luminosities in the infrared range L(TIR). “Composite” star formation rates in compact galaxies with active star formation are compared with those determined from the extinction- and spectral aperture-corrected luminosities of galaxies in the hydrogen emission line Hβ. We obtain relations for “composite” star formation rates with different combinations of indicators, which are mutually consistent and correspond to star formation rates derived from the luminosities of galaxies in the hydrogen emission line Hβ corrected for extinction and spectral aperture.

Keywords: dwarf star-forming galaxies, galaxy H II regions, interstellar dust, ultraviolet and infrared emission
References: 

1. B. Abolfathi, D. S. Aguado, G. Aguilar, et al. The fourteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the Apache Point Observatory galactic evolution experiment, Astrophys. J., Suppl. Ser. 235, 42 (2018).

2. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, 16 (2014).

3. J. A. Baldwin, M. M. Phillips, and R. Terlevich. Classification parameters for the emission line spectra of extragalactic objects, Publ. Astron. Soc. Pac. 93, 5–19 (1981).
https://doi.org/10.1086/130766

4. A. J. Battisti, D. Calzetti, B. D. Johnson, and D. Elbaz. Continuous mid-infrared star formation rate in dicators: Diagnostics for 0 < z < 3 star-forming galaxies, Astrophys. J. 800, 143 (2015).
https://doi.org/10.1088/0004-637X/800/2/143

5. D. Calzetti, S.-Y. Wu, S. Hong, et al. The calibration of monochromatic far-infrared star formation rate indicators, Astrophys. J. 714, 1256–1279 (2010).
https://doi.org/10.1088/0004-637X/714/2/1256

6. D. A. Dale, G. J. Bendo, C. W. Engelbracht, et al. Infrared spectral energy distributions of nearby galaxies, Astrophys. J. 633, 857–870 (2005).
https://doi.org/10.1086/491642

7. C. W. Engelbracht, G. H. Rieke, K. D. Gordon, et al. Metallicity effects on dust properties in starbursting galaxies, Astrophys. J. 678, 804–827 (2008).
https://doi.org/10.1086/529513

8. C.-N. Hao, R. C. Kennicutt, Jr., B. D. Johnson, et al. Dust-corrected star formation rates of galaxies. II. Combinations of ultraviolet and infrared tracers, Astrophys. J. 741, 124 (2011).
https://doi.org/10.1088/0004-637X/741/2/124

9. J. Iglesias-Páramo, V. Buat, T. T. Takeuchi, et al. Star formation in the nearby universe: The ultraviolet and infrared points of view, Astrophys. J., Suppl. Ser. 164, 38–51 (2006).

10. Y. I. Izotov, N. G. Guseva, K. J. Fricke, and C. Henkel. Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey, Astron. Astrophys. 561, 33 (2014).
https://doi.org/10.1051/0004-6361/201322338

11. Y. I. Izotov, N. G. Guseva, K. J. Fricke, et al. The efficiency of ionizing photon production and the radiation energy balance in compact star-forming galaxies, Mon. Not. R. Astron. Soc. 467, 4118–4130 (2017).
https://doi.org/10.1093/mnras/stx347

12. G. Kauffmann, T. M. Heckman, C. Tremonti, et al. The host galaxies of active galactic nuclei, Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).
https://doi.org/10.1111/j.1365-2966.2003.07154.x

13. R. C. Kennicutt, Jr. Star formation in galaxies along the Hubble sequence, Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).
https://doi.org/10.1146/annurev.astro.36.1.189

14. R. C. Kennicutt, Jr., L. Armus, G. Bendo, et al. SINGS: The SIRTF nearby galaxies survey, Publ. Astron. Soc. Pac. 115, 928–952 (2003).
https://doi.org/10.1086/376941

15. R. C. Kennicutt, Jr., C.-N. Hao, D. Calzetti, et al. Dust-corrected star formation rates of galaxies. I. Combinations of Hα and infrared tracers, Astrophys. J. 703, 1672–1695 (2009).
https://doi.org/10.1088/0004-637X/703/2/1672

16. P. Kroupa. On the variation of the initial mass function, Mon. Not. R. Astron. Soc. 322, 231 (2001).
https://doi.org/10.1046/j.1365-8711.2001.04022.x

17. C. J. Lonsdale, H. E. Smith, M. Rowan-Robinson, et al. SWIRE: The SIRTF wide-area infrared extragalactic survey, Publ. Astron. Soc. Pac. 115, 897–927 (2003).
https://doi.org/10.1086/376850

18. E. J. Murphy, J. J. Condon, E. Schinnerer, et al. Calibrating extinction-free star formation rate diagnostics with 33 GHz free-free emission in NGC6946, Astrophys. J. 737, 67 (2011).
https://doi.org/10.1088/0004-637X/737/2/67

19. M. J. O’Dowd, D. Schiminovich, B. D. Johnson, et al. SSGSS: The Spitzer-SDSS-GALEX spectroscopic survey, Astrophys. J. 741, 79 (2011).
https://doi.org/10.1088/0004-637X/741/2/79

20. A. Rémy-Ruyer, S. C. Madden, F. Galliano, et al. Revealing the cold dust in low-metallicity environments. I. Photometry analysis of the Dwarf Galaxy Survey with Herschel, Astron. Astrophys. 557, 95 (2013).
https://doi.org/10.1051/0004-6361/201321602

21. G. H. Rieke, A. Alonso-Herrero, B. J. Weiner, et al. Determining star formation rates for infrared galaxies, Astrophys. J. 692, 556–573 (2009).
https://doi.org/10.1088/0004-637X/692/1/556

22. E. E. Salpeter. The luminosity function and stellar evolution, Astrophys. J. 121, 161–167 (1955).
https://doi.org/10.1086/145971

23. M. Treyer, D. Schiminovich, B. D. Johnson, et al. Mid-infrared spectral indicators of star formation and active galactic nucleus activity in normal galaxies, Astrophys. J. 719, 1191–1211 (2005).
https://doi.org/10.1088/0004-637X/719/2/1191

24. F. Walter, J. M. Cannon, H. Roussel, et al. Dust and atomic gas in dwarf irregular galaxies of the M81 Group: the SINGS and THINGS view, Astrophys. J. 661, 102–114 (2007).
https://doi.org/10.1086/514807

25. H. Wu, C. Cao, C.-N. Hao, F.-S. Liu, et al. PAH and mid-infrared luminosities as measures of star formation rate in SPITZER First Look Survey galaxies, Astrophys. J., Lett. 632, L79–L82 (2005).
https://doi.org/10.1086/497961

26. Y. Wu, V. Charmandaris, L. Hao, et al. Mid-infrared properties of low-metallicity blue compact dwarf galaxies from the SPITZER infrared spectrograf, Astrophys. J. 639, 157–172 (2006).
https://doi.org/10.1086/499226

27. F. Zhang, L. Li, X. Kang, et al. Uncertainties in the calibrations of star formation rate, Mon. Not. R. Astron. Soc. 433, 1039–1053 (2013).
https://doi.org/10.1093/mnras/stt785

28. Y.-N. Zhu, H. Wu, C. Cao, and H.-N. Li. Correlations between mid-infrared, far-infrared, Hα, and FUV luminosities for Spitzer SWIRE field galaxies, Astrophys. J. 686, 155–171 (2008).
https://doi.org/10.1086/591121