Development of a solar circular flare М6.4 according to observations in the Нα line

Heading: 
1Chornogor, SN, 1Kondrashova, NN
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(2):41-56
https://doi.org/10.15407/kfnt2021.02.041
Start Page: Solar Physics
Language: Ukrainian
Abstract: 

The development of the 3N / M6.4 flare on July 19, 2000 in the active region of NOAA 9087 was studied based on the analysis of its images in the Нα line.Нα -filtergrams obtained at the Medon Observatory were used. The flare-active region NOAA 9087 had a complex multipolar magnetic field structure. The flare 3N/M6.4 class began with the appearance of two bright kernels near a large spot. A few minutes later flare kernels appeared in the central part of the active region, where a coronal source of hard X-ray radiation was identified. The flare lasted 2.5 hours. Its energy was released sequentially in different places of the active region. The flare kernels were located along the polarity inversion line at the boundaries of the chromospheric cells. Flare ribbons had a circular shape. An assumption is made about a magnetic topology of the spine-fan type containing null point. In this case, flare ribbons are the intersections of the fan quasi-separatrix layer with the lower atmosphere. The successive appearance of flare kernels may indicate slipping magnetic reconnection in the flare under study. In the Нα-images in the main phase of the flare, there are reconnecting loops in the eastern part of the active region, which are clearly visible in the ultraviolet wavelength range.

Keywords: activity, chromosphere, magnetic reconnections, solar flares, Sun
References: 

1. Aulanier G., Demoulin P., Schrijver C. J., et al. (2013) The standard flare model in three dimensions. II. Upper limit on solar flare energy. Astron. and Astrophys. 549. id. A66, 7.
https://doi.org/10.1051/0004-6361/201220406

2. Aulanier G., Golub L., DeLuca E. E., et al. (2007) Slipping magnetic reconnection in coronal loops. Science. 318 (5856). 1588—1591.
https://doi.org/10.1126/science.1146143

3. Aulanier G., Janvier M., Schmieder B. (2012) The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. and Astrophys. 543. id.A110, 14.
https://doi.org/10.1051/0004-6361/201219311

4. Aulanier G., Pariat E., Demoulin P., DeVore C. R. (2006) Slip-running reconnection in quasi-separatrix layers. Solar Phys. 238 (2). 347—376.
https://doi.org/10.1007/s11207-006-0230-2

5. Chandra R., Schmieder B., Mandrini C. H., et al. (2011) Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003. Solar Phys. 269 (1). 83—104.
https://doi.org/10.1007/s11207-010-9670-9

6. Сhornogor S. N., Kondrashova N. N. (2020) Morphology of the flare-productive active region NOAA 9087. Kinematics and Phys. of Celestial Bodies. 36 (3). 140–152.
https://doi.org/10.3103/S0884591320030022

7. Demoulin P. (2006) Extending the concept of separatrices to QSLs for magnetic reconnection. Adv. Space Res. 37 (7). 1269—1282.
https://doi.org/10.1016/j.asr.2005.03.085

8. Demoulin P., Bagala L. G., Mandrini C. H., et al. (1997) Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. and Astrophys. 325. 305—317.

9. Demoulin P., Mandrini C. H., Rovira M. G., et al. (1994) Interpretation of multiwavelength observations of November 5, 1980 solar flares by the magnetic topology of AR 2766. Solar Phys. 150 (1-2). 221—243.
https://doi.org/10.1007/BF00712887

10. Demoulin P., van Driel-Gesztelyi L., Schmieder B., et al. (1993) Evidence for magnetic reconnection in solar flares. Astron. and Astrophys. 271. 292—307.

11. Devi P., Joshi B., Chandra R., et al. (2020) Development of a confined circular-cum-parallel ribbon flare and associated pre-flare activity. Solar Phys. 295 (6). id.75.
https://doi.org/10.1007/s11207-020-01642-y

12. Dudik J., Janvier M., Aulanier G., et al. (2014) Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA. Astrophys. J. 784 (2). id. 144. 21.
https://doi.org/10.1088/0004-637X/784/2/144

13. DudRk J., Polito V., Janvier M., et al. (2016) Slipping magnetic reconnection, chromospheric evaporation, implosion, and precursors in the 2014 September 10 X1.6-class solar flare. Astrophys. J. 823. 41. 21.
https://doi.org/10.3847/0004-637X/823/1/41

14. Guo J., Wang H., Wang J., et al. (2019) The role of a magnetic topology skeleton in a solar active region. Astrophys. J. 874 (2). id. 181. 10.
https://doi.org/10.3847/1538-4357/ab0aed

15. Hernandez-Perez A., Thalmann J. K., Veronig A., et al. (2017) Generation mechanisms of quasi-parallel and quasi-circular flare ribbons in a confined flare. Astrophys. J. 847 (2). id. 124. 14.
https://doi.org/10.3847/1538-4357/aa8814

16. Hou Y. J., Li T., Zhang J. (2016) Flux rope proxies and fan-spine structures in active region NOAA 11897. Astron. and Astrophys. 592. id. A138. 8.
https://doi.org/10.1051/0004-6361/201628851

17. Janvier M. (2017) Three-dimensional magnetic reconnection and its application to solar flares. J. Plasma Phys. 83 (1). id. 535830101. 49.
https://doi.org/10.1017/S0022377817000034

18. Janvier M., Aulanier G., Pariat E., Demoulin P. (2013) The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. and Astrophys. 555. id. A77, 14.
https://doi.org/10.1051/0004-6361/201321164

19. Jing J., Liu R., Cheung M. C. M., et al. (2017) Witnessing a large-scale slipping magnetic reconnection along a dimming channel during a solar flare. Astrophys. J. Lett. 842 (2). id. L18. 7.
https://doi.org/10.3847/2041-8213/aa774d

20. Kosugi T., Makishima K., Murakami T., et al. (1991) The Hard X-ray Telescope (HXT) for the SOLAR-A mission. Sol. Phys. 136 (1). 17—36.
https://doi.org/10.1007/BF00151693

21. Kurochka E. V., Lozitsky V. G. (2005) Magnetic fields and thermodynamical condirions in the M6.4/3N solar flare on July 19, 2000. Kinematika i Fizika Nebesnykh Tel, Suppl. 5. 143—145.

22. Li H. (2011) Magnetic field configurations leading to solar eruptions. First Asia-Pacific solar physics meeting ASI Conference Series. 2. 291—296. / Eds A. R. Choudhuri, D. Banerjee. 2011.

23. Li T., Yang S., Zhang Q., et al. (2018) Two episodes of magnetic reconnections during a confined circular-ribbon flare. Astrophys. J. 859 (2). id. 122. 9.
https://doi.org/10.3847/1538-4357/aabe84

24. Li T., Zhang J. (2014) Slipping magnetic reconnection triggering a solar eruption of a triangle-shaped flag flux rope. Astrophys. J. Lett. 791 (1). id. L13. 6.
https://doi.org/10.1088/2041-8205/791/1/L13

25. Li T., Zhang J. (2015) Quasi-periodic slipping magnetic reconnection during an X-class solar flare observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph.  Astrophys. J. Lett. 804 (1). id. L8. 7.
https://doi.org/10.1088/2041-8205/804/1/L8

26. Liu C., Lee J., Deng N., et al. (2006) Large-scale activities associated with the 2003 October 29 X10 flare. Astrophys. J. 642 (2). 1205—1215.
https://doi.org/10.1086/501000

27. Lorincik J., Dudik J., Aulanier G. (2019) Manifestations of three-dimensional magnetic reconnection in an eruption of a quiescent filament: filament strands turning to flare loops. Astrophys. J. 885 (1). id. 83, 11.
https://doi.org/10.3847/1538-4357/ab4519

28. Lozitsky V., Stodilka M. (2019) Magnetic fields and thermodynamic conditions in the pre-peak phase of M6.4/3N solar flare. Bulletin of Taras Shevchenko National University of Kyiv., № 59. 22—33.
https://doi.org/10.17721/BTSNUA.2019.59.20-29

29. Luoni M. L., Mandrini C. H., Cristiani G. D., DJmoulin P. (2007) The magnetic field topology associated with two M flares. Adv. Space Res. 39 (9). 1382—1388.
https://doi.org/10.1016/j.asr.2007.02.005

30. Mandrini C. H., Demoulin P., Henoux J. C., Machado M. E. (1991) Evidence for the interaction of large scale magnetic structures in solar flares. Astron. and Astrophys. 250. 541—547.

31. Mandrini C. H., Demoulin P., Rovira M. G., et al. (1995) Constraints on flare models set by the active region magnetic topology. Magnetic topology of AR 6233. Astron. and Astrophys. 303. 927—939.

32. Masson S., Pariat E., Aulanier G., Schrijver C. J. (2009) The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700 (1). 559—578.
https://doi.org/10.1088/0004-637X/700/1/559

33. Masson S., Pariat E., Valori G., et al. (2017) Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare. Astron. and Astrophys. 604. id.A76, 16.
https://doi.org/10.1051/0004-6361/201629654

34. Ogawara Y., Takano T., Kato T., et al. (1991) The Solar-A mission — an overview. Sol. Phys. 136 (1). 1—16.
https://doi.org/10.1007/978-94-011-2626-7_1

35. Priest E. R., DJmoulin P. (1995) Three-dimensional magnetic reconnection without null points. 1. Basic theory of magnetic flipping. J. Geophys. Res. 100 (A12). 23443—23464.
https://doi.org/10.1029/95JA02740

36. Priest E. R., Forbes T. G. (2002) The magnetic nature of solar flares. Astron. and Astrophys. Rev. 10 (4). 313—377.
https://doi.org/10.1007/s001590100013

37. Priest E. R., Titov V. S. (1996) Magnetic reconnection at three-dimensional null points. Phil. Trans. Math., Phys. and Eng. Sci. 354 (1721). 2951—2992.
https://doi.org/10.1098/rsta.1996.0136

38. Reid H. A. S., Vilmer N., Aulanier G., Pariat E. (2012) X-ray and ultraviolet investigation into the magnetic connectivity of a solar flare. Astron. and Astrophys. 547. id. A52. 8.
https://doi.org/10.1051/0004-6361/201219562

39. Romano P., Falco M., Guglielmino S. L., Murabito M. (2017) Observation of a 3D magnetic null point. Astrophys. J. 837(2). id. 173. 8.
https://doi.org/10.3847/1538-4357/aa63f4

40. Scherrer P. H., Bogart R. S., Bush R. I., et al. (1995) The solar oscillations investigation — Michelson Doppler Imager. Solar Phys. 162 (1-2). 129—188.
https://doi.org/10.1007/BF00733429

41. Shen Y., Qu Z., Zhou C., et al. (2019) Round-trip slipping motion of the circular flare ribbon evidenced in a fan-spine jet. Astrophys. J. Lett. 885 (1). id. L11. 8.
https://doi.org/10.3847/2041-8213/ab4cf3

42. Sobotka M., Dudik J., Denker C., et al. (2016) Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope. Astron. and Astrophys. 596. id. A1. 6.
https://doi.org/10.1051/0004-6361/201527966

43. Sun X., Hoeksema J. T., Liu Y., et al. (2013) Hot spine loops and the nature of a late-phase solar flare. Astrophys. J. 778 (2). id. 139. 17.
https://doi.org/10.1088/0004-637X/778/2/139

44. T`r`k T., Aulanier G., Schmieder B., et al. (2009) Fan-spine topology formation through two-step reconnection driven by twisted flux emergence. Astrophys. J. 704 (1). 485—495.
https://doi.org/10.1088/0004-637X/704/1/485

45. Wang H., Liu C. (2012) Circular ribbon flares and homologous jets. Astrophys. J. 760 (2). id. 101. 9.
https://doi.org/10.1088/0004-637X/760/2/101

46. Wang H., Yan Y., Sakurai T., Zhang M. (2000) Topology of magnetic field and coronal heating in solar active regions — II. The role of quasi-separatrix layers. Solar Phys. 197 (2). 263—273.

47. Xu Z., Yang K., Guo Y., et al. (2017) Homologous flares driven by twisted flux emergence. Astrophys. J. 851 (1). id. 30. 11.
https://doi.org/10.3847/1538-4357/aa9995

48. Yang K., Guo Y., Ding M. D. (2015) On the 2012 October 23 circular ribbon flare: emission features and magnetic topology. Astrophys. J. 806 (2). id. 171. 13.
https://doi.org/10.1088/0004-637X/806/2/171

49. Zheng R., Chen Y., Wang B. (2016) Slipping magnetic reconnections with multiple flare ribbons during an X-class solar flare. Astrophys. J. 823 (2). id. 136. 7.
https://doi.org/10.3847/0004-637X/823/2/136