Dynamic falling of the Chelyabinsk meteoroid: The sizes, radiation and destruction

1Chernogor, LF, 1Mylovanov, YB
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(5):37-65
https://doi.org/10.15407/kfnt2021.05.037
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

The purpose of the paper is to obtain refined height-time dependences of radiation intensity and mass of the Chelyabinsk meteoroid during the fall, to determine the size of the bolide and to build a model of destruction with an estimate of the parameters of fragment distribution by mass. The study of the impact of large celestial bodies on the environment is an urgent task for forecasting environmental consequences. To calculate the radiation intensity, the time dependence of the bolides brightness and E. Epic's empirical formula were used. The Stefan-Boltzmann law and M. Planck's formula were used for the model of radiation of a perfect black body in a limited range of wavelengths. A method was found to determine the size of the bolide according to published observations from the video recorder. When constructing the model of continuous crushing, an adapted equation of motion of individual fragments was used. Three types of distribution of fragments by masses were tested: logarithmically normal, power and uniform. As a result of numerical simulation, the contribution of radiation energy is determined. It is shown that 21 % of the kinetic energy of a meteoroid is spent on radiation. The changes of mass, height-time dependences of the bolide size and values of parameters for different distributions of fragments by weight are calculated. The diameter of the bolide head reached 2 km, and the length of the tail was 3.5—4 km. It is established that at the initial stage of motion the results of fragmentation describes the power law distribution, and in denser layers of the atmosphere is lognormal. The characteristics of the swarm of stone fragments that may have been followed were estimated behind the meteoroid. The length of the swarm reached 30 km, the maximum mass of the swarm was estimated at 400 tons, and the radiation energy was 0.6 % relative to the initial kinetic energy of the meteoroid.

Keywords: bolide, Chelyabinsk meteoroid, flash, fragments after mass, fragments cluster, perfect black body, Planck's formula, size of a bolide, Stefan-Boltzmann's law
References: 

1. V. V. Alpatov, V. A. Burov, Yu. P. Vagin, K. A. Galkin, G. V. Givishvili, Ya. V. Glukhov, D. V. Davidenko, D. S. Zubachev, V. N. Ivanov, A. N. Karkhov, V. A. Korshunov, V. B. Lapshin, L. N. Leshchenko, D. A. Lysenko, V. T. Minligareev, M. A. Morozova, E. S. Perminova, Yu. I. Portnyagin, Yu. S. Rusakov, N. L. Stal’, A. V. Syroeshkin, A. V. Tertyshnikov, G. F. Tulinov, M. A. Chichaeva, V. S. Chudnovskii, and A. Yu. Shtyrkov, Geophysical Conditions during the Explosion of the Chelyabinsk (Chebarkul) Meteoroid on February 15, 2013 (Inst. Prikl. Geofiz., Moscow, 2013) [in Russian].

2. Astron. Vestn. 47 (4) (2013) (Thematic Issue).

3. P. B. Babadzhanov, Meteors and Their Observations (Nauka, Moscow, 1987) [in Russian].

4. V. A. Bronshten. Crushing and destruction of large meteoric bodies in the atmosphere, Astron. Vestn. 29, 450–458 (1995).

5. V. A. Bronshten, Physics of Meteoric Phenomena (Springer Netherlands, 1983).Book
https://doi.org/10.1007/978-94-009-7222-3

6. V. G. Voroshilov, Mathematical Modeling in Geology. Tutorial (Izd. Tomsk. Politekh. Univ., Tomsk, 2001) [in Russian].

7. A. E. Dudorov and A. E. Maier. Movement and destruction of the Chelyabinsk meteoroid in the atmosphere, Vestn. Chelyab. Gos. Univ. Fiz., No. 1 (330), 47–57 (2014).

8. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, M. A. Shelyakov, Yu. V. Pakhomov, B. M. Shustov, V. V. Shuvalov, E. E. Biryukov, Yu. S. Rybnov, M. Ya. Marov, L. V. Rykhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Kharlamov, and I. A. Trubetskaya. Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013), Sol. Syst. Res. 47, 240–254 (2013).
https://doi.org/10.1134/S0038094613040114

9. S. N. Zamozdra. Characteristics of the Chelyabinsk superbolide, Vestn. Chelyab. Gos. Univ. Fiz., No. 1 (330), 6–15 (2014).

10. Catastrophic Events Caused by Cosmic Objects, Ed. by V. V. Adushkin and I. V. Nemchikov, (Springer Netherlands, 2005).

11. V. G. Kruchinenko, Mathematical and Physical Analysis of Meteoric Manifestation (Naukova Dumka, Kyiv, 2012) [in Ukrainian].

12. Asteroids and Comets. Chelyabinsk Event and Study of the Fall of a Meteorite into Lake Chebarkul: Proc. Int. Sci.-Pract. Conf., Cherbakul, May 21–23, 2013, Ed. by V. A. Alekseev (Krai Ra, Chelyabinsk, 2013).

13. R. V. Medvedev. Determination of the mechanical and thermal properties of the Kunashak and Yelenovka meteorites, Meteoritika, No. 33, 100–104 (1974).

14. Chelyabinsk Meteorite — A Year on Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15, 2014, Ed. by N. A. Antipin (Kamennyi Poyas, Chelyabinsk, 2014).

15. Yu. B. Milovanov and L. F. Chernogor. Regularization of the algorithm for calculating the height temporal characteristics describing the dynamics of the fall of the Chelyabinsk meteoroid, Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser. Radiofiz. Elektron., No. 26, 75–79 (2017).

16. O. P. Popova, V. V. Shuvalov, Yu. S. Rybnov, V. A. Kharlamov, D. O. Glazachev, V. V. Emel’yanenko, A. P. Kartashova, and P. Dzhenniskens. Parameters of the Chelyabinsk meteoroid: Data analysis, in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 10–21 [in Russian].

17. O. P. Popova, V. V. Shuvalov, Yu. S. Rybnov, V. A. Kharlamov, D. O. Glazachev, V. V. Emel’yanenko, A. P. Kartashova, and P. Dzhenniskens. Parameters of the Chelyabinsk meteoroid: Data analysis, in Chelyabinsk Meteorite — A Year on Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15, 2014, Ed. by N. A. Antipin (Kamennyi Poyas, Chelyabinsk, 2014), pp. 364–376.

18. Reference Guide to Celestial Mechanics and Astrodynamics, Ed. by G. N. Duboshin, 2nd ed., (Nauka, Moscow, 1976) [in Russian].

19. S. P. Stulov, V. N. Mirskii, and A. N. Vislyi, Aerodynamics of Bolides (Fizmatlit, Moscow, 1995) [in Russian].

20. Chelyabinsk Superbolide, Ed. by N. N. Gor’kavyi and A. E. Dudorov (Chelyab. Univ., Chelyabinsk, 2016) [in Russian].

21. L. F. Chernogor. Basic physical phenomena during the flight of the Chelyabinsk space body, in Asteroids and Comets. Chelyabinsk Event and Study of the Fall of a Meteorite into Lake Chebarkul: Proc. Int. Sci.-Pract. Conf., Cherbakul, May 21–23, 2013, Ed. by V. A. Alekseev (Krai Ra, Chelyabinsk, 2013), pp. 148–152.

22. L. F. Chernogor. Plasma, electromagnetic and acoustic effects of the "Chelyabinsk meteorite, Inzh. Fiz., No. 8, 23–40 (2013).

23. L. F. Chernogor. Large-scale disturbances of the Earth’s magnetic field accompanying the fall of the Chelyabinsk meteoroid, Radiofiz. Elektron. 4 (18) (3), 47–54 (2013).

24. L. F. Chernogor. Geomagnetic field effects of the Chelyabinsk meteoroid, Geomag. Aeron. (Engl. Transl.) 54, 613–624 (2014).
https://doi.org/10.1134/S001679321405003X

25. L. F. Chernogor. The main effects of the Chelyabinsk meteorite fall: The results of physical-mathematical modeling, in Chelyabinsk Meteorite — A Year on Earth: Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15, 2014, Ed. by N. A. Antipin (Kamennyi Poyas, Chelyabinsk, 2014), pp. 229–264.

26. L. F. Chernogor. Ionospheric effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.) 55, 353–368 (2015).
https://doi.org/10.1134/S0016793215030044

27. L. F. Chernogor. Acoustic effects of the Chelyabinsk meteoroid, Radiofiz. Radioastron. 22, 3–66 (2017).
https://doi.org/10.15407/rpra22.01.053

28. L. F. Chernogor. Atmospheric-seismic effect of the Chelyabinsk meteoroid, Radiofiz. Radioastron. 22, 123–137 (2017).
https://doi.org/10.15407/rpra22.02.123

29. L. F. Chernogor and V. V. Barabash. Ionosphere disturbances accompanying the flight of the Chelyabinsk body, Kinematics Phys. Celestial Bodies 30, 126–136 (2014).
https://doi.org/10.3103/S0884591314030039

30. L. F. Chernogor and K. P. Garmash. Perturbations in the geocosmos accompanying the fall of the "Chelyabinsk meteorite, Radiofiz. Radioastron. 18, 231–243 (2013).

31. L. F. Chernogor and Yu. B. Milovanov. Dynamics of the fall of the Chelyabinsk meteoroid: Altitude-time dependences, Radiofiz. Radioastron. 23, 104–115 (2018).
https://doi.org/10.15407/rpra23.02.104

32. L. F. Chernogor and Yu. B. Mylovanov. Dynamics of the fall of the Chelyabinsk meteoroid: Mass-energy balance, Radiofiz. Radioastron. 23, 176–188 (2018).
https://doi.org/10.15407/rpra23.03.176

33. L. F. Chernogor, Yu. B. Milovanov, V. N. Fedorenko, and A. M. Tsymbal. Satellite observations of ionospheric disturbances which followed the Chelyabinsk meteorite passage, Kosm. Nauka Tekhnol. 19 (6), 38–46 (2013).
https://doi.org/10.15407/knit2013.06.038

34. P. Brown, R. E. Spalding, D. O. ReVelle, E. Tagliaferri, and S. P. Worden. The flux of small near-Earth objects colliding with the Earth, Nature 420, 294–296 (2002).
https://doi.org/10.1038/nature01238

35. L. F. Chernogor and V. T. Rozumenko. The physical effects associated with Chelyabinsk meteorite’s passage, Probl. At. Sci. Technol. 86, 136–139 (2013).

36. S. S. Grigoryan, F. S. Ibodov, and S. I. Ibadov. Physical mechanism of Chelyabinsk superbolide explosion, Sol. Syst. Res. 47, 268–274 (2013).
https://doi.org/10.1134/S0038094613040151

37. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi. Chelyabinsk airburst, damage assessment, meteorite, and characterization, Science 342, 1069–1073 (2013).
https://doi.org/10.1126/science.1242642

38. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi. Supplementary materials: Chelyabinsk airburst, damage assessment, meteorite, and characterization, Science 342 (2013). https://www.sciencemag.org/cgi/content/full/ sc-ience.1242642/DC1. Accessed July 27, 2018.
https://doi.org/10.1126/science.1242642

39. V. V. Svetsov, I. V. Nemtchinov, and A. V. Teterev. Disintegration of large meteoroids in Earth’s atmosphere: Theoretical models, Icarus 116, 131–153 (1995).
https://doi.org/10.1006/icar.1995.1116

40. W. A. Weibull. A statistical distribution function of wide applicability, J. Appl. Mech. 18, 293–297 (1951).
https://doi.org/10.1115/1.4010337