Statistical analysis of the orbital motion of selected Earth’s artificial satellites during the 24th cycle of solar activity

1Bilinsky, AI, 1Baran, OA, 1Stodilka, MI, 1Vovchyk, YB, Kovalchuk, MM
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(6):62-84
https://doi.org/10.15407/kfnt2021.06.062
Start Page: Earth's Rotation and Geodynamics
Language: Ukrainian
Abstract: 

Statistical analysis of selected parameters of solar activity and orbital motion of artificial sateliites of the Earth during the 24th cycle of soiar activity was performed. Inaciive satellites, rocket bodies and their debris moving mainly in low orbits were selected for the study. Different algorithms of analysis were applied to the time series of solar radiation flux F10.7 and the calculated rate of orbital deceleration dP/dt of the studied space objects (SO): estimation of their annual statistical characteristics, study of these parameters for periodicity (wavelet analysis), additive selection of trend and seasonal components. It is obiained that the rate of orbital deceleraiion of sateliites increases 10 times near the maximum of solar activity (2012—2014). For SO 06073 and SO 31117, we confirmed the presence of seasonal changes in solar radiation F10.7 and kinematic parameter dP/dt, their cyclicity with a period of 27 days, etc. There is a strong anticorrelation between the trends of the relevant parameters within -0.73...-0.95 for SO 31117 in the period 2011—2018, within -0.82...-0.95 for SO 37794 in the period 2012—2018.

Keywords: artificial satellites of the Earth, elements of orbits, flux of solar radiation, solar activity, statistical analysis, time series
References: 

1. State Space Agency of Ukraine. (2021) URL: https://www.nkau.gov.ua (Last accessed 07.05.2021).

2. Epishev V. P., Isak I. I., Kudak V. I., Motrunich I. I., Noibauer I. F., Koshkin N. I., Belinskii A. I., Martyniuk-Lototskij K. P., Blagodyr Ya. T., Lopachenko V. V., Rykhalskij V. V., Ryschenko S. V., Zhukovetskij A. V. (2012) Some results of studies of the behaviour of a satellite in orbit in contingency mode under the near-Earth space influence. Kosm. nauka tehnol. 18(1). 60—67.
https://doi.org/10.15407/knit2012.01.060

3. Parnowski А. С., Yermolayev Yu. I., Zhuk  I. T. (2010) Space weather: the history of research and forecasting. Kosm. nauka tehnol. 16(1). 90—99.
https://doi.org/10.15407/knit2010.01.090

4. UMOS — Ukraine Network of Optical Stations for near-Earth space research: Catalogue. (2021) URL: http://mao.uran.ua/umos/index.php?slab=slabid-12 (Last accessed 05.06.2021).

5. Shakun L. S., Koshkin N. I. (2011) Cluster analysis of database of orbit parameters of artificial satellites. Odessa Astron. Publs. 24. 147—152.

6. Shulga A. V., Kravchuk S. G., Sybiryakova Y. S., Bilinsky A. I., Blagodyr Ya. T., Vovchyk E. B., Epishev V. P., Kara I. V., Kozyryev Y. S., Koshkin N. I., Kudak V. I., Kulichenko N. A., Lubich I. V., Mazhaev A. E., Martynyuk-Lototsky K. P., Romanyuk Ya. О., Terpan S. S., Shakun L. S. (2015) Development of Ukrainian network of optical stations UMOS as component of control systems for near-Earth space. Kosm. nauka tehnol. 21(3). 74—82.
https://doi.org/10.15407/knit2015.03.074

7. Archive of the Daily Solar Data (2021) prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center. URL: ftp://ftp.swpc.noaa.gov/pub/warehouse (Last accessed: 01.03.2021).

8. Cannon P., Angling M., Barclay L., Curry Ch., Dyer C., Edwards R., Greene G., Hapgood M., Horne R. B., Jackson D., Mitchell C. N., Owen J., Richards A., Rodgers Ch., Ryden K., Saunders S., Sweeting M., Tanner R., Thomson A., Underwood C. (2013) Extreme space weather: impacts on engineered systems and infrastructure. London: Royal Academy of Engineering.
URL: https://www.raeng.org.uk/publications/reports/space-weather-full-report

9. Cleveland R. B., Cleveland W. S., McRae J. E., Terpenning I. (1990) STL: A seasonal-trend decomposition procedure based on Loess. J. Official Statistics. 6(1). 3—73.

10. Feigelson E. D., Babu G. J. (2012) Modern statistical methods for astronomy: with R applications. Cambridge University Press, ISBN: 9780521767279.
https://doi.org/10.1017/CBO9781139015653

11. Feynman J., Gabriel S. B. (2000) On space weather consequences and predictions. J. Geophys. Res. 105(A5). 10543—10564.
https://doi.org/10.1029/1999JA000141

12. Hyndman R. J., Athanasopoulos G. (2021) Forecasting: principles and practice, 3rd edition, Melbourne: OTexts. URL: https://OTexts.com/fpp3 (Last accessed: 23.04.2021).

13. Iucci N., Levitin A. E. , Belov A. V., Eroshenko E. A., Ptitsyna N. G., Villoresi G., Chizhenkov G. V. , Dorman L. I., Gromova L. I., Parisi M., Tyasto M. I., Yanke V. G. (2005) Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 3. S01001. 16.
https://doi.org/10.1029/2003SW000056

14. Koshkin N., Korniychuk L., Korobeynikova E., Ryabov M., Sukhov K. (2006) The features of change of the drag perturbations of artificial satellite orbits during extreme developments of solar activity in years 2003-2004. Sun and Geosphere. 1(2). 46—49.

15. Koval’chuk M. M., Hirnyak M. B., Baran O. A., Stodilka M. I., Vovchyk Ye. B., Bilinsky A. I., Blahodyr Ya. T., Virun N.V., Apunevych S. V. (2017) Investigation of heliogeoactivity impact on the dynamics of orbital parameters of Earth’s artificial satellites. I. Kinematics Phys. Celestial Bodies. 33(5). 245—249.

https://doi.org/10.3103/S0884591317050038

16. Koval’chuk M. M., Baran O. A., Stodilka M. I., Vovchyk Ye. B., Bilinsky A. I., Blahodyr Ya. T., Virun N. V. (2017) Orbital data of the artificial satellites of the Earth. 17-th Odessa International Astronomical Gamow Conference-School “Astronomy and Beyond: Astrophysics, Cosmology, Cosmomicrophysics, Astroparticle Physics, Radioastronomy and Astrobiology”: Book of Abstracts. August 13—20, 2017. Odessa, Ukraine. 33.
https://doi.org/10.3103/S0884591317050038

17. LathuillPre C., Menvielle M., Lilensten J., Amari T., Radicella S. M. (2002) From the Sun’s Atmosphere to the Earth’s Atmosphere: an Overview of Scientific Models Available for Space Weather Developments. Ann. Geophys., European Geosciences Union. 20(7). 1081—1104.
https://doi.org/10.5194/angeo-20-1081-2002

18. Lockwood M., Bentley S., Owens M. J., Barnard L. A., Scott C. J., Watt C. E., Allanson O. (2018) The development of a space climatology: 3. Models of the evolution of distributions of space weather variables with timescale. Space Weather. 16. 180—209.
https://doi.org/10.1029/2018SW002017

19. Orbital Debris Quarterly News by National Aeronautics and Space Administration (2020) 24, 2. URL: https://orbitaldebris.jsc.nasa.gov/ (Last accessed: 23.04.2021).

20. Qian L., Solomon S. C. (2012) Thermospheric density: An overview of temporal and spatial variations. Space Sci. Revs. 168. 147—173.

https://doi.org/10.1007/978-1-4614-5677-3_4

21. Satellites’ Orbital Data (in TLE) by USSPACECOM. (2021)
URL: https://www.space-track.org (Last accessed: 01.03.2021).

22. Vallado D. A., Crawford P., Kelso T. S. (2006) Revisiting Spacetrack Report #3. AIAA 2006-6753 (presented at the AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, 2006 August 21–24). URL: http://www.celestrak.com/publications/ (Last accessed: 30.04.2021).
https://doi.org/10.2514/6.2006-6753

23. Weng L., Lei J., Doornbos E., Fang H., Dou X. (2018) Seasonal variations of thermo­spheric mass density at dawn/dusk from GOCE observations. Ann. Geophys. 36. 489—496.
https://doi.org/10.5194/angeo-36-489-2018