Kinetic Alfven waves generation ahead of the Earth bow shock

Heading: 
1Malovichko, PP, Kyzyurov, YV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(5):3-20
https://doi.org/10.15407/kfnt2022.05.003
Start Page: Space Physics
Language: Ukrainian
Abstract: 

The paper considers the possibility of kinetic Alfven wave’s generation by high-speed protons beams ahead of the Earth bow shock. An analytical solution is obtained for the firehose instability of kinetic Alfven waves caused by the beam’s dynamic pressure. The influence of the temperature of high-speed beams and the temperature of solar wind protons on the characteristics of generated disturbances is investigated. It is shown that temperature has a significant effect on the transverse scales of disturbances. The higher the proton beam’s temperature and the lower the background plasma temperature, the stronger the restrictions imposed on the sizes of transverse wavelengths. The development of instability during the propagation of reflected, intermediate and diffusion protons beams in the pre-shock region of the Earth’s bow shock is considered. The dynamics of the motion of disturbances in this region is analyzed.

Keywords: Alfven waves, firehose instability, plasmas, solar wind

Full text (PDF)

References: 

1. Александров А. Ф., Богданкевич Л. С., Рухадзе А. П. (1978). Основы электродинамики плазмы. М.: Высшая школа, 407.

2. Войтенко Ю. М., Кришталь А. Н., Куц С. В. и др. (1990). Генерация кинетических альвеновских волн в переходной области солнечного ветра. Геомагнетизм и аэрономия. 30(6). 901 - 907.

3. Войтенко Ю. М., Кришталь А. Н., Маловичко П. П. и др. (1990). Токовая неустойчивость и генерация кинетических альвеновских волн в магнитосфере Земли. Геомагнетизм и аэрономия. 30(3). 402-406.

4. Кролл Н., Трайвелпис А. (1975). Основы физики плазмы. М.: Мир, 525.

5. Маловичко П. П., Кришталь А. Н., Юхимук А. К. (2006). Влияние неоднородностей температуры на генерацию кинетических альвеновских волн в магнитосфере Земли. Кинематика и физика небес. тел. 22(1). 58-64.

6. Achterberg A. (2013). Mirror, firehose and cosmic-ray-driven instabilities in a high- plasma. Mon. Notic. Roy. Astron. Soc. 436(1). 705-717.
https://doi.org/10.1093/mnras/stt1608

7. Artemyev A. V., Zimovets I. V., Rankin R. (2016). Electron trapping and acceleration by kinetic Alfvn waves in solar flares. Astron. and Astrophys. 589, May. A101.
https://doi.org/10.1051/0004-6361/201527617

8. Bell A. R. (2005). The interaction of cosmic rays and magnetized plasma. Mon. Notic. Roy. Astron. Soc. 358(1). 181-187.
https://doi.org/10.1111/j.1365-2966.2005.08774.x

9. Bian N. H., Kontar E. P., Brown J. C. (2010). Parallel electric field generation by Alfvn wave turbulence. Astron. and Astrophys. 519. A114.
https://doi.org/10.1051/0004-6361/201014048

10. Birn J., Artemyev A. V., Baker D. N., et al. (2012). Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173(1-4). 49-102.
https://doi.org/10.1007/s11214-012-9874-4

11. Bonifazi C., Moreno G. (1981). Reflected and diffuse ions backstreaming from the Earth's bow shock 1. Basic properties. J. Geophys. Res. 86(A6). 4397-4404.
https://doi.org/10.1029/JA086iA06p04397

12. Bonifazi C., Moreno G. (1981). Reflected and diffuse ions backstreaming from the Earth's bow shock 2. Origin. J. Geophys. Res. 86(A6). 4405-4413.
https://doi.org/10.1029/JA086iA06p04405

13. Borovsky J. E., Gary S. P. (2011). Electron-ion Coulomb scattering and the electron Landau damping of Alfvn waves in the solar wind. J. Geophys. Res. 116. A07101.
https://doi.org/10.1029/2010JA016403

14. Burgess D., Mbius E., Scholer M. (2012). Ion Acceleration at the Earth's Bow Shock. Space Sci. Rev. 173(1-4). 5-47.
https://doi.org/10.1007/s11214-012-9901-5

15. Bykov A. M., Osipov S. M., Ellison D. C. (2011). Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Notic. Roy. Astron. Soc. 410(1). 39-52.
https://doi.org/10.1111/j.1365-2966.2010.17421.x

16. Chandu V., Devi E. S., Jayapal R., et al. (2012). The influence of negatively charged heavy ions on the kinetic Alfven wave in a cometary environment. Astrophys. Space Sci. 339(1). 157-164.
https://doi.org/10.1007/s10509-011-0970-9

17. Chen C. H. K., Matteini L., Schekochihin A. A. (2016). Multi-species measurements of the firehose and mirror instability thresholds in the solar wind. Astrophys. J. Let. 825(2). L26.
https://doi.org/10.3847/2041-8205/825/2/L26

18. Chen L., Wu D. J. (2010). Kinetic Alfvn wave instability driven by electron temperature anisotropy in high- plasmas. Phys. Plasmas. 17(6). 062107.
https://doi.org/10.1063/1.3439680

19. Chen L., Wu D. J. (2012). Kinetic Alfvn wave instability driven by field-aligned currents in solar coronal loops. Astrophys. J. 754(2). 123.
https://doi.org/10.1088/0004-637X/754/2/123

20. Chen L., Wu D. J. (2012). Dispersion equation of low-frequency waves driven by temperature anisotropy. Plasma Sci. and Technol. 14(10). 880.
https://doi.org/10.1088/1009-0630/14/10/05

21. Chen L., Wu D. J., Huang J. (2013). Kinetic Alfvn wave instability driven by field-aligned currents in a low-. J. Geophys. Res. 118(6). 2951-2957.
https://doi.org/10.1002/jgra.50332

22. Chen L., Wu D. J., Hua Y. P. (2011). Kinetic Alfvn wave instability driven by a field-aligned current in high- plasmas. Phys. Rev. E. 84(4). 046406.
https://doi.org/10.1103/PhysRevE.84.046406

23. Chen L., Wu D. J., Zhao G. Q., et al. (2014). Excitation of kinetic Alfven waves by fast electron beams. Astrophys. J. 793. 13.
https://doi.org/10.1088/0004-637X/793/1/13

24. Chen L., Wu D. J., Zhao G. Q., et al. (2014). Excitation of kinetic Alfvn waves by fast electron beams. Astrophys. J. 793(1). 13.
https://doi.org/10.1088/0004-637X/793/1/13

25. Chen L., Wu D. J., Zhao G. Q., et al. (2015). A possible mechanism for the formation of filamentous structures in magnetoplasmas by kinetic Alfvn waves. J. Geophys. Res. 120(1). 61-69.
https://doi.org/10.1002/2014JA020742

26. Cramer N. F. (2001). The physics of Alfven waves. Wiley, 298.
https://doi.org/10.1002/3527603123

27. Farrell W., Curtis S., Desch M., et al. (1992). A theory for narrow-banded radio bursts at Uranus: MHD surface waves as an energy driver. J. Geophys. Res. 97(A4). 4133-4141.
https://doi.org/10.1029/91JA03143

28. Gary S. P. (1991). Electromagnetic ion / ion istabilities and their consequences in space plasmas: a review. Space Sci. Rev. 56. 373-415.
https://doi.org/10.1007/BF00196632

29. Hollweg J. V. (1999). Kinetic Alfvn wave revisited. J. Geophys. Res. 104(A7). 14811-14819.
https://doi.org/10.1029/1998JA900132

30. Jafelice L. C., Opher R. (1987). Kinetic Alfvn waves in extended radio sources. Astrophys. Space Sci. 137(2). 303-315.
https://doi.org/10.1007/BF00639998

31. Kimura T., Tsuchiya F., Misawa H., et al. (2011). Periodicity analysis of Jovian quasi-periodic radio bursts based on Lomb-Scargle periodograms. J. Geophys. Res. 116(A3). A03204.
https://doi.org/10.1029/2010JA016076

32. Kronberg E. A., Buk R., Haaland S., et al. (2011). On the origin of the energetic ion events measured upstream of the Earth's bow shock by STEREO, Cluster, and Geotail. J. Geophys. Res. 116(A2). A02210.
https://doi.org/10.1029/2010JA015561

33. Kunz M. W., Schekochihin A. A., Chen C. H. K., et al. (2015). Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas. J. Plasma Phys. 81(5). 325810501.
https://doi.org/10.1017/S0022377815000811

34. Liu Y., Gong B., Hu T.-P. (2021). The solitary dispersive Alfvn wave in a plasma with two distinct electron groups. Plasma Phys. Reports. 47(7). 715-724.
https://doi.org/10.1134/S1063780X21070126

35. Liu Z., Zhao J., Sun H., et al. (2019). Parallel-propagating waves and instabilities in plasmas with streaming proton and alpha particles. Astrophys. J. 874(2). 128.
https://doi.org/10.3847/1538-4357/ab0896

36. Low-frequency waves in space plasmas. (2016). Geophys. Monograph Ser. Vol. 216. Wiley, 512.

37. Malovichko P. P. (2013). Properties of dispersive Alfvn waves: 1. Kinetics (very low, intermediate, and low density plasmas). Kinematics and Phys. Celestial Bodies. 29(6). 269-284.
https://doi.org/10.3103/S0884591313060044

38. Malovichko P. P. (2016). Excitation of Alfven turbulence in the solar wind ahead of the Earth bow shock by beams of high-velocity protons. Kinematics and Phys. Celestial Bodies. 32, N. 2. 86-99.
https://doi.org/10.3103/S0884591316020045

39. Malovichko P. P., Kyzyurov Yu. V. (2020). Development of firehose instability of magnetosonic type in the presence of high-speed proton beams. Kinematics and Phys. Celestial Bodies. 36(3). 114-128.
https://doi.org/10.3103/S0884591320030058

40. Malovichko P. P., Voitenko Y. M., De Keyser J. (2018). Non-resonant Alfvenic instability activated by high temperature of ion beams in compensated-current astrophysical plasmas. Astron. and Astrophys. 615, July. A169.
https://doi.org/10.1051/0004-6361/201731710

41. McClements K. G., Fletcher L. (2009). Inertial Alfvn wave acceleration of solar flare electrons. Astrophys. J. 693(2). 1494-1499.
https://doi.org/10.1088/0004-637X/693/2/1494

42. Oka M., Terasawa T., Saito Y., Mukai T. (2005). Field-aligned beam observations at the quasi-perpendicular bow shock: generation and shock angle dependence. J. Geophys. Res. 110. A05101.
https://doi.org/10.1029/2004JA010688

43. Paschmann G., Sckopke N., Papamastorakis I., et al. (1981). Characteristics of reflected and diffuse ions upstream from the earth's bow shock. J. Geophys. Res. 86(A6). 4355-4364.
https://doi.org/10.1029/JA086iA06p04355

44. Pohl M., Wilhelm A., Telezhinsky I. (2015). Reacceleration of electrons in supernova remnants. Astron. and Astrophys. 574, February. A43.
https://doi.org/10.1051/0004-6361/201425027

45. Singh H. D., Jatav B. S. (2019). Coherent structures and spectral shapes of kinetic Alfvn wave turbulence in solar wind at 1 AU. Res. Astron. Astrophys. 19. 093.
https://doi.org/10.1088/1674-4527/19/7/93

46. Singh H. D., Singh B. J. (2019). Coherent structures and spectral shapes of kinetic Alfvn wave turbulence in solar wind at 1 AU. Res. Astron. Astrophys. 19(7). 093.
https://doi.org/10.1088/1674-4527/19/7/93

47. Smith K. W., Terry P. W. (2011). Damping of electron density structures and implications for interstellar scintillation. Astrophys. J. 730(2). 133.
https://doi.org/10.1088/0004-637X/730/2/133

48. Stasiewicz K., Seyler C., Mozer F., et al. (2001). Magnetic bubbles and kinetic Alfvn waves in the high-latitude magnetopause boundary. J. Geophys. Res. 106(A12). 29503-29514.
https://doi.org/10.1029/2001JA900055

49. Sun H., Zhao J., Xie H., Wu D. (2019). On kinetic instabilities driven by ion temperature anisotropy and differential flow in the solar wind. Astrophys. J. 884(1). 44.
https://doi.org/10.3847/1538-4357/ab3dad

50. Terry P. W., Smith K. W. (2007). Coherence and intermittency of electron density in small-scale interstellar turbulence. Astrophys. J. 665(1). 402-415.
https://doi.org/10.1086/519016

51. Tsurutani B. T., Rodriguez P. (1981). Upstream waves and particles: An overview of ISEE results. J. Geophys. Res. 86(A6). 4317-4324.
https://doi.org/10.1029/JA086iA06p04317

52. Vafin S., Schlickeiser R., Yoon P. H. (2015). Linear theory of low frequency magnetosonic instabilities in counterstreaming bi-Maxwellian plasmas. Phys. Plasmas. 22, 092131.
https://doi.org/10.1063/1.4932004

53. Voitenko Y., Pierrard V. (2015). Generation of proton beams by non-uniform solar wind turbulence. Solar Phys. 290(4). 1231-1241.
https://doi.org/10.1007/s11207-015-0661-8

54. Wang X. G., Ren L. W., Wang J. Q., et al. (2009). Synthetic solar coronal heating on current sheets. Astrophys. J. 694(2. 1595-1601.
https://doi.org/10.1088/0004-637X/694/2/1595

55. Weidl M. S., Winske D., Niemann C. (2019). Three regimes and four modes for the resonant saturation of parallel ion-beam instabilities. Astrophys. J. 873(1). 57.
https://doi.org/10.3847/1538-4357/ab0462

56. Whitelam S., Ashbourn J. M. A., Bingham R., et al. (2002). Alfvn wave heating and acceleration of plasmas in the solar transition region producing jet-like eruptive activity. Solar Phys. 211(1-2). 199-219.
https://doi.org/10.1023/A:1022408206824

57. Wu D. J., Chen L. (2013). Excitation of kinetic Alfvn waves by density striation in magneto-plasmas. Astrophys. J. 771(2). 3.
https://doi.org/10.1088/0004-637X/771/1/3

58. Wu D. J., Chen L. (2020). Kinetic Alfvn waves in laboratory, space, and astrophysical plasmas. Springer, 359.
https://doi.org/10.1007/978-981-13-7989-5

59. Xiang L., Chen L., Wu D. J. (2019). Resonant mode conversion of Alfvn waves to kinetic Alfvn waves in an inhomogeneous plasma. Astrophys. J. 881(1). 61.
https://doi.org/10.3847/1538-4357/ab2bf1

60. Xiang L., Wu D. J., Chen L. (2018). Excitation of ion cyclotron waves by ion and electron beams in compensated-current system. Astrophys. J. 857(2). 108.
https://doi.org/10.3847/1538-4357/aab662

61. Xiang L., Wu D. J., Chen L. (2018). Effect of alpha beams on low-frequency electromagnetic waves driven by proton beams. Astrophys. J. 869(1). 64.
https://doi.org/10.3847/1538-4357/aaec6d

62. Yang L., Wu D. J. (2005). Kinetic Alfvn waves in plasmas with heavy ions. Phys. Plasmas. 12(6). 062903.
https://doi.org/10.1063/1.1931676

63. Yang L., Wu D. J., Wang S. J., et al. (2014). Comparison of two-fluid and gyrokinetic models for kinetic Alfvn waves in solar and space plasmas. Astrophys. J. 792(1). 36.
https://doi.org/10.1088/0004-637X/792/1/36

64. Zaitsev V. V., Stepanov A. V. (2015). Particle acceleration and plasma heating in the chromosphere. Solar Phys. 290(12). 3559-3572.
https://doi.org/10.1007/s11207-015-0731-y

65. Zweibel E. G., Everett J. E. (2010). Environments for magnetic field amplification by cosmic rays. Astrophys. J. 709(2). 1412-1419.
https://doi.org/10.1088/0004-637X/709/2/1412