Variation of the H component of geomagnetic field: relationship to the ring and field aligned currents

Heading: 
Gautam, S, Saurav, SKhadka, Adhikari, B, Sapkota, S, Poudel, PRam, Mishra, RKumar, Shrestha, CKumar
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(1):17-36
https://doi.org/10.15407/kfnt2023.01.017
Start Page: Space Physics
Language: Ukrainian
Abstract: 

Disturbance of equatorial ring current during the geomagnetic storm has dominant effect on geomagnetic field. The short term irregular variation on geomagnetic field is characterized by interaction of solar-wind magnetic field and Earth’s magnetosphere, which develops time varying current in magnetosphere and ionosphere. This study represents the irregular variation on H component of Earth’s magnetic field during three intense geomagnetic storm events. Among the five selected stations, four are at low-latitude and remaining one is at middle latitude. All the stations recorded the maximum depression on H component during the main phase of storm but sudden storm commencements (SSCs) event before initial phase caused slight increase in magnitude. In each of the event, low-latitude stations recorded large perturbation on magnetic field as compared to the middle latitude station. This result supports the intensification of ring current as initiated by the transfer of plasma and energy through interplanetary coronal mass ejections (ICMEs) and finally causes falling off of H component. Kakadu station (southern latitude) showed maximum value of in second and third event, this result keeps up that mostly southern hemisphere station measures large decline on H component during storm time. The calculated value of ring current and field aligned current (FAC) showed extreme negative correlation with . This unique result reveals that ring current is not only a factor that cause disturbance on horizontal component of Earth’s magnetic field but FAC also has considerable effect.

Keywords: field aligned current, geomagnetic field, geomagnetic storms, ring current
References: 

1. Adhikari B. (2015) Hildcaa-related effects recorded in middle low latitude magnetometers. PhD Thesis, Sao Jose dos Campos, Brasil.

2. Adhikari B., Dahal S., Sapkota N., Baruwal P., Bhattarai B., Khanal K., Chapagain N. P. (2018) Field-aligned current and polar cap potential and geomagnetic disturbances: A review of cross-correlation analysis. Earth and Space Sci. 5. 440-455.
https://doi.org/10.1029/2018EA000392

3. Alex S., Mukherjee S., Lakhina G. (2006) Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003. J. Atmos. and Solar-Terres. Phys. 68. 769-780.
https://doi.org/10.1016/j.jastp.2006.01.003

4. Astafyeva E., Zakharenkova I., Huba J., Doornbos E., Van den IJssel J. (2017) Global ionospheric and thermospheric effects of the june 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res.: Space Phys. 122.
https://doi.org/10.1002/2017JA024174

5. Baker D. N., Jaynes A. N., Kanekal S. G., Foster J. C., Erickson P. J., Fennell J. F., Blake J. B., Zhao H., Li X., Elkington S. R., Henderson M. G. (2016) Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015. J. Geophys. Res.: Space Phys. 121. 6647-6660.
https://doi.org/10.1002/2016JA022502

6. Birkeland K. (1913)The Norwegian aurora polaris expedition 1902-1903. H. Aschelhoug & Company.

7. Burlaga L., Sittler E., Mariani F., Schwenn R. (1981) Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res.: Space Phys. 86. 6673-6684.
https://doi.org/10.1029/JA086iA08p06673

8. Chen B., Xu W., Chen G., Du A., Wu Y., Liu X. (2009) Latitudinal shift and tilt of the ring current during magnetic storms. Chi. Sci. Bul. 54. 95-103.
https://doi.org/10.1007/s11434-008-0364-8

9. Daglis I. A., Thorne R. M., Baumjohann W., Orsini S. (1999) The terrestrialring current: Origin, formation, and decay. Revs. Geophys. 37. 407-438.
https://doi.org/10.1029/1999RG900009

10. De Abreu A. J., Fagundes P. R., Gende M., Bolaji O. S., De Jesus R., Brunini C. (2014) Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24. Adv. in Space Res. 53. 1313-1328.
https://doi.org/10.1016/j.asr.2014.02.011

11. Gavoret J., Gibert D., Menvielle M., Le Moul J. (1986) Long-term variations of the external and internal components of the Earth's magnetic field. J. Geophys. Res.: Solid Earth. 91. B5. 4787-4796.
https://doi.org/10.1029/JB091iB05p04787

12. Gillmor C. S., Spreiter J. R. (1997) Discovery of the magnetosphere. American Geophysical Union Washington D. C.
https://doi.org/10.1029/HG007

13. Gonzalez W. D., Tsurutani B. T. (1987) Criteria of interplanetary parameters causing intense magnetic storms (Dst  100 nT). Planet. and Space Sci. 35. 1101-1109.
https://doi.org/10.1016/0032-0633(87)90015-8

14. Gonzalez W. D., Joselyn J.-A., Kamide Y., Kroehl H. W., Rostoker G., Tsurutani B. T., Vasyliunas V. (1994) What is a geomagnetic storm? J. Geophys. Res.: Space Phys. 99. 5771-5792.
https://doi.org/10.1029/93JA02867

15. Gonzalez W. D., Tsurutani B. T., De Gonzalez A. L. C. (1999) Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88. 529-562.
https://doi.org/10.1023/A:1005160129098

16. Gonzalez W. D., Echer E., Clua-Gonzalez A., Tsurutani B. T. (2007) Interplane¬tary origin of intense geomagnetic storms (Dst  100 nT) during solar cycle 23. Geophys. Res. Lett. 34.
https://doi.org/10.1029/2006GL028879

17. Gopalswamy N., Yashiro S., Michalek G., Xie H., Lepping R., Howard R. (2005) Solar source of the largest geomagnetic storm of cycle 23. Geophys. Res. Lett. 32.
https://doi.org/10.1029/2004GL021639

18. Gosling J. T., Hildner E., MacQueen R. M., Munro R. H., Poland A. I., Ross C. L. (1974) Mass ejections from the Sun: A view from Skylab. J. Geophys. Res. 79. 4581-4587.
https://doi.org/10.1029/JA079i031p04581

19. Gosling J. T., Russel C. T., Priest E. R., Lee L. C. (1990) Physics of magnetic flux ropes. Geophys. Monogr. 58.

20. Huang C.-S., Foster J., Goncharenko L., Erickson P., Rideout W., Coster A. (2005) A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network. J. Geophys. Res.: Space Phys. 110.
https://doi.org/10.1029/2004JA010865

21. Iijima T., Potemra T. A. (1976) The amplitude distribution of field-aligned currents at northern high latitudes observed by triad. J. Geophys. Res. 81. 2165-2174.
https://doi.org/10.1029/JA081i013p02165

22. Iijima T., Potemra T. A. (1976) Field-aligned currents in the dayside cusp observed by triad. J. Geophys. Res. 81. 5971-5979.
https://doi.org/10.1029/JA081i034p05971

23. Iijima T., Potemra T. A. (1978) Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res.: Space Phys. 83. 599-615.
https://doi.org/10.1029/JA083iA02p00599

24. Kikuchi T., Hashimoto K. K., Nozaki K. (2008) Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res.: Space Phys. 113.
https://doi.org/10.1029/2007JA012628

25. Kozyra J. U., Jordanova V. K., Borovsky J. E., Thomsen M. F., Knipp D. J., Evans D. S., McComas D. J., Cayton T. E. (1998) Effects of a high-density plasma sheet on ring current development during the November 2-6, 1993, magnetic storm. J. Geophys. Res.: Space Phys. 103. 26285-26305.
https://doi.org/10.1029/98JA01964

26. Lanza R., Meloni A. (2006) The Earth's magnetic field. Berlin Heidelberg: Springer.

27. Liu J., Wang W., Burns A., Yue X., Zhang S., Zhang Y., Huang C. (2016) Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res.: Space Phys. 121. 727-744.
https://doi.org/10.1002/2015JA021832

28. MacQueen R. M., Eddy J. A., Gosling J. T., Hildner E., Munro R. H., Newkirk G. A. Jr, Poland A. I., Ross C. L. (1974) The outer solar corona as observed from Skylab: Preliminary results. Astrophys. J. 187.
https://doi.org/10.1086/181402

29. Marques de Souza A., Echer E., Bolzan M. J. A., Hajra R. (2018) Cross-correlation and cross-wavelet analyses of the solar wind IMF Bz and auroral electrojet index AE coupling during hildcaas. Ann. Geophys. 36. 205-211.
https://doi.org/10.5194/angeo-36-205-2018

30. stgaard N., Germany G., Stadsnes J., Vondrak R. R. (2002) Energy analysis of substorms based on remote sensing techniques, solar wind measurements, and geomagnetic indices. J. Geophys. Res.: Space Phys. 107.
https://doi.org/10.1029/2001JA002002

31. Ramsingh, Sripathi S., Sreekumar S., Banola S., Emperumal K., Tiwari P., Kumar B. S. (2015) Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground-based observations over Indian sector. J. Geophys. Res.: Space Phys. 120.
https://doi.org/10.1002/2015JA021509

32. Sapkota S., Saurav S. K., Gautam S., Karki M., Adhikari B., Mishra R. K., Klausner V., Dhungana B. M. (2022) Analysis of Y-component of geomagnetic field and SYM-H index using wavelet multiresolution analysis. Geomagn. Aeron. 62. 125-137.
https://doi.org/10.1134/S001679322202013X

33. Shinbori A., Tsuji Y., Kikuchi T., Araki T., Ikeda A., Uozumi T., Baishev D., Shevtsov B. M., Nagatsuma T., Yumoto K. (2012) Magnetic local time and latitude dependence of amplitude of the main impulse (MI) of geomagnetic sudden commencements and its seasonal variation. J. Geophys. Res.: Space Phys. 117.
https://doi.org/10.1029/2012JA018006

34. Smith E. J., Slavin J. A., Zwickl R. D., Bame S. J. (1986) Shocks and storm sudden commencements. Solar wind-magnetosphere coupling. Eds Y. Kamide, J. A. Slavin, Terra Pub., Tokyo 126. 345-365
https://doi.org/10.1007/978-94-009-4722-1_25

35. Tsurutani B. T., Gonzalez W. D., Tang F., Akasofu S. I., Smith E. J. (1988) Origin of interplanetary southward magnetic fields responsiblefor major magnetic storms near solar maximum (1978-1979). J. Geophys. Res.: Space Phys. 93. 8519-8531.
https://doi.org/10.1029/JA093iA08p08519

36. Turner N. E., Baker D., Pulkkinen T., Roeder J., Fennell J., Jordanova V. (2001) Energy content in the storm time ring current. J. Geophys. Res.: Space Phys. 106. 19149-19156.
https://doi.org/10.1029/2000JA003025

37. Verkhoglyadova O., Tsurutani B., Mannucci A., Mlynczak M., Hunt L., Paxton L., Komjathy A. (2016) Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick's day in 2012, 2013, and 2015. J. Geophys. Res.: Space Phys. 121. 8900-8923.
https://doi.org/10.1002/2016JA022883

38. Veselovsky D., Zhukov Y., Kuznetsov C., Ishkov B., Eroshenko Y., Gaidash K., Kuzin Z., Ignat'ev S., Sukhodrev S., Eselevich M., Eselevich V. (2005) A year later: Solar, heliospheric, and magnetospheric disturbances in November 2004. Geomagn. and Aeron. 45. 681-719.

39. Wanliss J. A., Showalter K. M. (2006) High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res.: Space Phys. 111.
https://doi.org/10.1029/2005JA011034

40. Williams D. J. (1985) Dynamics of the Earth's ring current: Theory and observation. Space Sci. Rev. 42. 375-396.
https://doi.org/10.1007/978-94-009-5454-0_23

41. Zhao H., Li X., Baker D., Fennell J., Blake J., Larsen B. A., Skoug R. M., Funsten H. O., Friedel R. H. W., Reeves G. D., Spence H. E. (2015) The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements. J. Geophys. Res.: Space Phys. 120. 7493-7511.
https://doi.org/10.1002/2015JA021533