LyC leaking galaxies: properties in the mid-infrared range based on the wise space telescope data

Izotova, IY, Izotov, YI
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(2):34-46
https://doi.org/10.15407/kfnt2023.02.034
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

We study the photometric properties in the mid-infrared range of the sample of compact star-forming galaxies leaking radiation in the Lyman continuum (LyC) and Lyα line aiming to find characteristics which can be used as quantitave indicators of the escape fractions fesc(Lyα) and fesc(LyC). Possible relations are analysed between colour indeces of galaxies in the mid-infrared range based on WISE data, on the one hand, and escape fractions of LyC and emission, on the other hand. We find dependencies of escape fractions fesc(Lyα) and fesc(LyC) on the colour index W1 – W4, where W1 and W4 are apparent WISE magnitudes at wavelengths 3.4 and 22 μm, respectively. This makes W1 – W4 useful quantitative characteristic for estimating of the escape fractions fesc(Lyα) and fesc(LyC) along with some characteristics of LyC leakers revealed earlier in the optical and UV ranges. Thus, emission of galaxies in the mid-infrared range can be used to search for candidates to LyC leaking galaxies for their future observations.

Keywords: compact star-forming galaxies, infrared radiation, interstellar dust, LyC leaking galaxies
References: 

1. Ahumada R., Allende Prieto C., Almeida A., et al. (2020) The 16th Data Release of the Sloan Digital Sky Surveys: first release from the APOGEE-2 Southern Survey and Full Release of eBOSS spectra. Astrophys. J. Suppl. Ser. 249. 3. 21.
https://doi.org/10.3847/1538-4365/ab929e

2. Bouwens R. J., Illingworth G. D., Oesch, P. A., et al. (2015) UV luminosity functions at redshifts z ~ 4 to z ~ 10: 10,000 galaxies from HST Legacy fields. Astrophys. J. 803. 34. 49.
https://doi.org/10.1088/0004-637X/803/1/34

3. Finkelstein S. L., D'Aloisio A., Paardekooper J.-P., et al. (2019) Conditions for reionizing the Universe with a low galaxy ionizing photon escape fraction. Ast¬rophys. J. 879. 36. 34.
https://doi.org/10.3847/1538-4357/ab1ea8

4. Cardamone C., Schawinski K., Sarzi M., et al. (2009) Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 399. 1191-1205.
https://doi.org/10.1111/j.1365-2966.2009.15383.x

5. Flury S. R., Jaskot A. E., Ferguson H. C., et al. (2022) The low-redshift Lyman continuum survey. I. New, diverse local Lyman continuum emitters. Astrophys. J. Suppl. Ser. 260. 1. 17.

6. Flury S. R., Jaskot A. E., Ferguson H. C., et al. (2022) The low-redshift Lyman continuum survey. II. New insights into LyC diagnostics. Astrophys. J. 930. 126. 21.

7. Grazian A., Giallongo E., Gerbasi R., et al. (2016) The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field. Astron. and Astrophys. 585. 48. 18.
https://doi.org/10.1051/0004-6361/201526396

8. Griffith R. L., Tsai C.-W., Stern D., et al. (2011) WISE discovery of low-metallicity blue compact dwarf galaxies. Astrophys. J. 736. L22. 5.
https://doi.org/10.1088/2041-8205/736/1/L22

9. Hassan S., Romeel Dav'e R., Mitra S., Finlator K., Ciardi B., Santos M. G. (2018) Constraining the contribution of active galactic nuclei to reionization. Mon. Notic. Roy. Astron. Soc. 473. 227-240.
https://doi.org/10.1093/mnras/stx2194

10. Inoue A. K., Shimizu I., Iwata I., Tanaka M. (2014) An updated analytic model for attenuation by the intergalactic medium. Mon. Notic. Roy. Astron. Soc. 442. 1805- 1820.
https://doi.org/10.1093/mnras/stu936

11. Izotova I. Y., Izotov Y. I. (2019) Properties of star-forming galaxies in the mid-infrared range from the data obtained with the WISE space telescope. Kinematics and Phys. Celestial Bodies. 35. 253-260.
https://doi.org/10.3103/S0884591319060035

12. Izotov Y. I., Chisholm J., Worseck G., et al. (2022) Lyman alpha and Lyman continuum emission of Mg II-selected star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 515. 2864-2881.
https://doi.org/10.1093/mnras/stac1899

13. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2011) Star-forming galaxies with hot dust emission in the Sloan Digital Sky Survey discovered by the Wide-field Infrared Survey Explorer (WISE). Astron. and Astrophys. 536. L7. 4.
https://doi.org/10.1051/0004-6361/201118402

14. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2014) Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey. Astron. and Astrophys. 2014. 561. 33. 30.
https://doi.org/10.1051/0004-6361/201322338

15. Izotov Y. I., Guseva N. G., Fricke K. J., et al. (2014) Dust emission in star-forming dwarf galaxies: General properties and the nature of the submm excess. Astron. and Astrophys. 570. 97. 21.
https://doi.org/10.1051/0004-6361/201423539

16. Izotov Y. I., Guseva N. G., Fricke K. J., et al. (2021) Low-redshift compact star-forming galaxies as analogues of high-redshift star-forming galaxies. Astron. and Astrophys. 646. 138. 19.
https://doi.org/10.1051/0004-6361/202039772

17. Izotov Y. I., Guseva N. G., Thuan T. X. (2011) Green Pea Galaxies and Cohorts: Luminous compact emission-line galaxies in the Sloan Digital Sky Survey. Astro¬phys. J. 728. 161. 16.
https://doi.org/10.1088/0004-637X/728/2/161

18. Izotov Y. I., Orlitov'a I., Schaerer D., et al. (2016) Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy. Nature. 529. 178-180.
https://doi.org/10.1038/nature16456

19. Izotov Y. I., Schaerer D., Thuan T. X., et al. (2016) Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 461. 3683-3701.
https://doi.org/10.1093/mnras/stw1205

20. Izotov Y. I., Schaerer D., Worseck G., et al. (2018) J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons. Mon. Notic. Roy. Astron. Soc. 474. 4514-4527.
https://doi.org/10.1093/mnras/stx3115

21. Izotov Y. I., Thuan T. X., Guseva N. G., Liss S. E. (2018) J0811+4730: the most metal-poor star-forming dwarf galaxy known. Mon. Notic. Roy. Astron. Soc. 473. 1956-1966.
https://doi.org/10.1093/mnras/stx2478

22. Izotov Y. I., Thuan T. X., Lipovetsky V. A. (1994) The primordial helium abundance from a new sample of metal-deficient blue compact galaxies. Astrophys. J. 435. 647-667.
https://doi.org/10.1086/174843

23. Izotov Y. I., Worseck G., Schaerer D., et al. (2018) Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios. Mon. Notic. Roy. Astron. Soc. 478. 4851-4865.
https://doi.org/10.1093/mnras/sty1378

24. Izotov Y. I., Worseck G., Schaerer D., et al. (2021) Lyman continuum leakage from low-mass galaxies with https://doi.org/10.1093/mnras/stab612

25. Jaskot A. E., Oey M. S. (2013) The origin and optical depth of ionizing radiation in the "Green Pea" galaxies. Astrophys. J. 766. 91. 23.
https://doi.org/10.1088/0004-637X/766/2/91

26. Kulkarni G., Worseck G., Hennawi J. F. (2019) Evolution of the AGN UV luminosity function from redshift 7.5. Mon. Notic. Roy. Astron. Soc. 488. 1035-1065.
https://doi.org/10.1093/mnras/stz1493

27. Lewis J. S. W., Ocvirk P., Aubert D., et al. (2020) Galactic ionizing photon budget during the epoch of reionization in the Cosmic Dawn II simulation. Mon. Notic. Roy. Astron. Soc. 496. 4342-4357.
https://doi.org/10.1093/mnras/staa1748

28. Madau P., Haardt F. (2015) Cosmic reionization after Planck: could quasars do it all? Astrophys. J. 813. L8. 6.
https://doi.org/10.1088/2041-8205/813/1/L8

29. Meyer R. A., Kakiichi K., Bosman S. E. I., et al. (2020) The role of galaxies and AGN in reionizing the IGM - III. IGM-galaxy cross-correlations at z ~ 6 from eight quasar fields with DEIMOS and MUSE. Mon. Notic. Roy. Astron. Soc. 494. 1560- 1578.
https://doi.org/10.1093/mnras/staa746

30. Mitra S., Ferrara A., Choudhury T. R. (2013) The escape fraction of ionizing photons from high-redshift galaxies from data-constrained reionization models. Mon. Notic. Roy. Astron. Soc. Lett. 428. L1-L5.
https://doi.org/10.1093/mnrasl/sls001

31. Nakajima K., Ouchi M. (2014) Ionization state of inter-stellar medium in galaxies: evolution, SFR-M*-Z dependence, and ionizing photon escape. Mon. Notic. Roy. Astron. Soc. 442. 900-916.
https://doi.org/10.1093/mnras/stu902

32. Ouchi M., et al. (2009) Large area survey for z = 7 galaxies in SDF and GOODS-N: implications for galaxy formation and cosmic reionization. Astrophys. J. 706. 1136-1151.
https://doi.org/10.1088/0004-637X/706/2/1136

33. Stark D. P. (2016) Galaxies in the first billion years after the Big Bang. Ann. Rev. Astron. and Astrophys. 54. 761-803.
https://doi.org/10.1146/annurev-astro-081915-023417

34. Thuan T. X., Martin G. E. (1981) Blue compact dwarf galaxies. I. Neutral hydrogen observations of 115 galaxies. Astrophys. J. 247. 823-848.
https://doi.org/10.1086/159094

35. Vanzella E., Giavalisco M., Inoue A. K., et al. (2010) The Great Observatories Origins Deep Survey: constraints on the Lyman continuum escape fraction distribution of Lyman-break galaxies at 3.4 https://doi.org/10.1088/0004-637X/725/1/1011

36. Vanzella E., Guo Y., Giavalisco M., et al. (2012) On the detection of ionizing radiation arising from star-forming galaxies at redshift z ~ 3-4: looking for analogs of "stellar re-ionizers". Astrophys. J. 751. 70. 14.
https://doi.org/10.1088/0004-637X/751/1/70

37. Yang H., Malhotra S., Rhoads J. E., Wang J. (2017) Blueberry galaxies: the lowest mass young starbursts. Astrophys. J. 847. 38. 9.
https://doi.org/10.3847/1538-4357/aa8809