Radio properties of the low-redshift isolated galaxies with active nuclei

Pulatova, NG, Vavilova, IB, Vasylenko, AA, Ulyanov, OM
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(2):47-72
https://doi.org/10.15407/kfnt2023.02.047
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

The purpose and the galaxy sample: We study the properties of 61 isolated galaxies with active nuclei (isolated AGNs) in radio range at the redshifts z m s ≤ 12m, a radial velocity of VrResults: We present radio fluxes densities available from the databases at the frequency of 1.4 GHz or 5 GHz for isolated AGNs from the 2MIG catalog. For 51 of the 61 galaxies of the sample, we were able to find fluxes densities at 1.4 GHz. These values for most isolated AGNs are in the range of 3...20 mJy, for two galaxies PGC35009 and NGC6951 in the range of 50...200 mJy, two galaxies ESO483-009 and ESO097-013 have spectral fluxes densities of 352 and 1200 mJy, respectively, and for 10 isolated AGNs fluxes densities are less than 3 mJy; radio fluxes densities for NGC0157 are not related to the position of this galaxy. We calculated the ratio R of the spectral fluxes densities in the radio to those in the optical bands. Since only eight isolated AGNs have measured 5 GHz fluxes densities, we used the 1.4 GHz radio flux conversion to 5 GHz to derive this ratio, assuming the spectral index alpha; = 0.7 as usual for Seyfert-type galaxies as Sv ∝ v–alpha; . For 27 isolated AGNs radio fluxes densities at 5 GHz are lower 3 mJy, for 15 AGNs are in 4...15 mJy, for 7 AGNs are in the range 15...55 mJy, two galaxies have radio fluxes densities 304 mJy and 132 mJy, ESO097-013 and ESO483-009, respectively. We found that 51 isolated AGNs are the radio quiet sources (R Conclusions: The systematization of the properties of the low-redshift 61 isolated AGNs in the radio range, of which 36 are in the northern and 25 in the southern sky, has future goal of setting up a program radio astronomical observations for estimating radiation fluxes densities and monitoring research for more detailed mapping of the characteristics of radio emission of these galaxies in comparison with the optical and X-ray properties. Observations in the radio range are important as it makes possible to track and separate star formation regions of a galaxy and central regions with a supermassive black hole, and thus provide information about the nature of nuclear activity.

Keywords: fundamental parameters, galaxies active, galaxies isolated, radio continuum general
References: 

1. Aird J., Coil A. L., Georgakakis A. (2019) X-rays across the galaxy population - III. The incidence of AGN as a function of star formation rate. Mon. Notic. Roy. Astron. Soc. 484(3). 4360-4378. 10.1093/mnras/stz125
https://doi.org/10.1093/mnras/stz125

2. Alexander D. M., Hickox R. C. (2012) What drives the growth of black holes? New Astron. Revs. 56(4). 93-121.
https://doi.org/10.1016/j.newar.2011.11.003

3. Allison J. R., Sadler E. M., Meekin A. M. (2014) A search for H I absorption in nearby radio galaxies using HIPASS. Mon. Notic. Roy. Astron. Soc. 440(1). 696-718.
https://doi.org/10.1093/mnras/stu289

4. Anderson K. S. (1971) On the interpretation of the H profile of the Seyfert galaxy NGC 5548. Astrophys. J. 169. 449-455.
https://doi.org/10.1086/151161

5. Anderson J. M., Ulvestad J. S. (2005) The size of the radio-emitting region in low-luminosity active galactic nuclei. Astrophys. J. 627(2). 674-700.
https://doi.org/10.1086/430463

6. Antyufeyev A. V., Korolev A. M., Patoka O. M., Shulga V. M., et al. (2019) Creating the RT-32 radio telescope on the basis of Mark-4B antenna system. 2. Estimation of the possibility for making spectral observations of radio astronomical objects. Radio Phys., Radio Astron. 24(3). 163-183.
https://doi.org/10.15407/rpra24.03.163

7. Augusto P., Gonzalez-Serrano J. I., Gizani N. A. B., Perez-Fournon I., Edge A. C. (2001) Probing the structure and size of the NLR in AGN with radio jets. Astron. and Astrophys. Transactions. 20(2). 275-279.
https://doi.org/10.1080/10556790108229710

8. Babyk Y. V., Del Popolo A., Vavilova I. B. (2014) Chandra X-ray galaxy clusters at z https://doi.org/10.1134/S1063772914090017

9. Babyk I., Vavilova I. (2014) The Chandra X-ray galaxy clusters at z https://doi.org/10.1007/s10509-013-1630-z

10. Basu-Zych A. R., Hornschemeier A. E., Haberl F., Vulic N., Wilms J., Zezas A., Kov¬la¬kas K., Ptak A., Dauser T. (2020) The next-generation X-ray galaxy survey with eROSITA. Mon. Notic. Roy. Astron. Soc. 498. 1651-1667.
https://doi.org/10.1093/mnras/staa2343

11. Bicay M. D., Kojoian G., Seal J., Dickinson D. F., Malkan M. A. (1995) A multifrequency radio continuum and IRAS faint source survey of Markarian galaxies. Astrophys. J. Suppl. Ser. 98(2), 369-440.
https://doi.org/10.1086/192168

12. Braatz J. A., Gugliucci N. E. (2008) The discovery of water maser emission from eight nearby galaxies. Astrophys. J. 678(1). 96-101.
https://doi.org/10.1086/529538

13. Brandt W. N., Hasinger G. (2005) Deep extragalactic X-Ray Surveys. Ann. Rev. Astron. and Astrophys. 43, 827-859.
https://doi.org/10.1146/annurev.astro.43.051804.102213

14. Chesnok N. G. (2010) General properties of a sample of isolated galaxies containing active nucleus. Kosm. Nauka Tehnol. 16(5). 77-80. (In Ukrainian)
https://doi.org/10.15407/knit2010.05.077

15. Chesnok N. G., Sergeev S. G., Vavilova I. B. (2009) Optical and X-ray variability of Seyfert galaxies NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, and Akn 564 and quasar 1E 0754. Kinematics and Phys. Celestial Bodies. 25(2). 107-113.
https://doi.org/10.3103/S0884591309020068

16. Condon J. J. (1989) The 1.4 GHz luminosity function and its evolution. Astrophys. J. 338. 13.
https://doi.org/10.1086/167176

17. Condon J. J., Cotton W. D., Broderick J. J. (2002) Radio sources and star formation in the local universe. Astron. J. 124(2). 675-689.
https://doi.org/10.1086/341650

18. Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Bro¬derick J. J. (1998) The NRAO VLA Sky Survey. Astron. J. 115(5). 1693-1716..
https://doi.org/10.1086/300337

19. Dennett-Thorpe J., Bridle A. H., Laing R. A., Scheuer P. A. G. (1999) Asymmetry of jets, lobe size and spectral index in radio galaxies and quasars. Mon. Notic. Roy. Astron. Soc. 304(2). 271-280.
https://doi.org/10.1046/j.1365-8711.1999.02234.x

20. de Vaucouleurs G. (1991) On the distribution of radio sources in rich galaxy clusters. Mon. Notic. Roy. Astron. Soc. 249(1). 28-30.
https://doi.org/10.1093/mnras/249.1.28P

21. Dobrycheva D. V., Vavilova I. B., Melnyk O. V., Elyiv A. A. (2018) Morphological type and color indices of the SDSS DR9 galaxies at 0.02 https://doi.org/10.3103/S0884591318060028

22. Doroshenko V. T., Efimov Y. S., Borman G. A., Pulatova N. G. (2014) BVRI CCD- pho¬to¬metry of comparison stars in the fields of galaxies with active nuclei. VI. Astro¬phys. 57(1). 30-49.
https://doi.org/10.1007/s10511-014-9312-2

23. Doroshenko V. T., Efimov Y. S., Borman G. A., Pulatova N. G. (2014) BVRI CCD- photometry of comparison stars in the fields of galaxies with active nuclei. Astro¬phys. 57(2). 176-196.
https://doi.org/10.1007/s10511-014-9324-y

24. Doroshenko V. T., Sergeev S. G., Efimov Y. S., Borman G. A., Okhmat D. N., Pulatova N. G., Nazarov S. V. (2013) BVRI CCD-Photometry of comparison stars in the fields of galaxies with active nuclei. V. Astrophys. 56(3). 343-358.
https://doi.org/10.1007/s10511-013-9290-9

25. Eckart A., Valencia-S. M., Shahzamanian B., et al. (2017) Experimental indicators of accretion processes in active galactic nuclei. arXiv:1712.06915
https://doi.org/10.22323/1.288.0033

26. Elyiv A. A., Diachenko N. M., Vavilova I. B., Vasylenko M. Yu., Dobrycheva D. V., Melnyk O. V. (2022) Redshift reconstruction for the SDSS galaxies with machine learning methods. Astron. and Astrophys. 2022.

27. Elyiv A. A., Melnyk O. V., Vavilova I. B., Dobrycheva D. V., Karachentseva V. E. (2020) Machine-learning computation of distance modulus for local galaxies. Astron. and Astrophys. 635, A124.
https://doi.org/10.1051/0004-6361/201936883

28. Fadda D., Marleau F. R., Storrie-Lombardi L. J., Makovoz D., Frayer D. T., Appleton P. N., Armus L., et al. (2006) The Spitzer Space Telescope extragalactic first look sur¬vey: 24 m data reduction, catalog, and source identification. Astron. J. 131(6). 2859-2876.
https://doi.org/10.1086/504034

29. Forman W., Jones C., Churazov E., Markevitch M., et al. (2007) Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665(2). 1057-1066.
https://doi.org/10.1086/519480

30. Galiullin I., Gilfanov M. (2021) Populations of super-soft X-ray sources in galaxies of different morphological types. Astron. and Astrophys. 646. A85.
https://doi.org/10.1051/0004-6361/202039522

31. Gallimore J. F., Axon D. J., O'Dea C. P., Baum S. A., Pedlar A. (2006) A survey of kiloparsec-scale radio outflows in radio-quiet active galactic nuclei. Astron. J. 132. 546-569.
https://doi.org/10.1086/504593

32. Gregory P. C., Condon J. J. (1991) The 87GB catalog of radio sources covering 0 degrees https://doi.org/10.1086/191559

33. Griffith M. R., Wright A. E. (1994) VizieR Online Data Catalog: Parkes-MIT-NRAO (PMN) Surveys (Griffith+ 1994) yCat, VIII/27.

34. Ho L. C., Ulvestad J. S. (2001) VizieR Online Data Catalog: VLA radio continuum survey of Seyfert galaxies (Ho+, 2001). Astrophys. J. Suppl. 133. 77.
https://doi.org/10.1086/319185

35. Hummel E., Pedlar A., van der Hulst J. M., Davies R. D. (1985) A radio continuum survey of SBC spiral galaxies at 1.465 GHz. Astron. and Astrophys. Suppl. Ser. 60, 293-313.

36. Jha V. K., Joshi R., Chand H., Wu X.-B., Ho L. C., Rastogi S., Ma Q. (2022) Accretion disk sizes from continuum reverberation mapping of AGN selected from the ZTF survey. Mon. Notic. Roy. Astron. Soc. 511(2). 3005-3016.
https://doi.org/10.1093/mnras/stac109

37. Karachentseva V. E., Mitronova S. N., Melnyk O. V., Karachentsev I. D. (2010) Catalog of isolated galaxies selected from the 2MASS survey. Astron. Bull. 65. 1-17.
https://doi.org/10.1134/S1990341310010013

38. Kellermann K. I., Sramek R., Schmidt M., Shaffer D. B., Green R. (1989) VLA observations of objects in the Palomar Bright Quasar Survey. Astron. J. 98, 1195.
https://doi.org/10.1086/115207

39. Khramtsov V., Vavilova I. B., Vasylenko M. Yu., Dobrycheva D. V., Elyiv A. A., Akhmetov V. S., Dmytrenko A. M., Khlamov S. V. (2022) Machine learning technique for morphological classification of galaxies from the SDSS. III. Image-based inference of detailed features. Space Sci. and Technol. 28(5). 27-55.

https://doi.org/10.15407/knit2022.05.027

40. Lin Y.-T., Huang H.-J., Chen Y.-C. (2018) An analysis framework for understanding the origin of nuclear activity in low-power radio galaxies. Astron. J. 155(5). 188.
https://doi.org/10.3847/1538-3881/aab5b4

41. Lynden-Bell D. (1969) Galactic nuclei as collapsed old quasars. Nature. 223. 690- 694.
https://doi.org/10.1038/223690a0

42. Makarov D., Prugniel P., Terekhova N., Courtois H., Vauglin I. (2014) HyperLEDA. III. The catalogue of extragalactic distances. Astron. and Astrophys. 570. A13.
https://doi.org/10.1051/0004-6361/201423496

43. Marvil J., Owen F., Eilek J. (2015) Integrated radio continuum spectra of galaxies. Astron. J. 149(1). 32.
https://doi.org/10.1088/0004-6256/149/1/32

44. Mauch T., Murphy T., Buttery H. J., Curran J., Hunstead R. W., Piestrzynski B., Robertson J. G., et al. (2003) SUMSS: a wide-field radio imaging survey of the southern sky - II. The source catalogue Mon. Notic. Roy. Astron. Soc. 342(4). 1117-1130.
https://doi.org/10.1046/j.1365-8711.2003.06605.x

45. Monreal-Ibero A., V'ilchez J. M., Walsh J. R., Mun~oz-Tun'on C. (2010) A study of the interplay between ionized gas and star clusters in the central region of NGC 5253 with 2D spectroscopy. Astron. and Astrophys. 517. A27.
https://doi.org/10.1051/0004-6361/201014154

46. Mundell C. G., Ferruit P., Nagar N., Wilson A. S. (2009) Radio variability in Seyfert nuclei. Astrophys. J. 703(1). 802-815.
https://doi.org/10.1088/0004-637X/703/1/802

47. Murphy T., Sadler E. M., Ekers R. D., Massardi M., Hancock P. J., Mahony E., Ricci R., et al. (2010) The Australia telescope 20 GHz survey: the source catalogue. Mon. Notic. Roy. Astron. Soc. 402(4). 2403-2423.
https://doi.org/10.1111/j.1365-2966.2009.15961.x

48. Nair P. B., Abraham R. G. (2010) VizieR Online Data Catalog: Detailed morphology of SDSS galaxies (Nair+, 2010), yCat, J/ApJS/186/427
https://doi.org/10.1088/0067-0049/186/2/427

49. Neumann M., Reich W., Fuerst E., Brinkmann W., Reich P., Siebert J. (1994) Multifre¬quency observations of ROSAT selected radio sources. Astron. and Astro¬phys. Suppl. 106. 303-326.

50. Nilson P. (1973) Uppsala general catalogue of galaxies. ugcg.book

51. Paggi A., Wang J., Fabbiano G., Elvis M., Karovska M. (2012) CHEERS results on Mrk 573: A study of Deep Chandra observations. Astrophys. J. 756(1). 39.
https://doi.org/10.1088/0004-637X/756/1/39

52. Parra R., Conway J. E., Aalto S., Appleton P. N., Norris R. P., Pihlstrom Y. M., Kewley L. J. (2010) COLA. III. Radio detection of active galactic nucleus in compact moderate luminosity infrared galaxies. Astrophys. J. 720(1). 555-568.
https://doi.org/10.1088/0004-637X/720/1/555

53. Patoka O., Antyufeyev O., Shmeld I., Bezrukovs V., Bleiders M., Orbidans A., Aber¬felds A., Shulga V. (2021) New ex-OH maser detections in the northern celestial hemisphere. Astron. and Astrophys. 652. A17.
https://doi.org/10.1051/0004-6361/202037623

54. Pilyugin L. S. Cedr'es B., Zinchenko I. A., et al. (2021) MaNGA galaxies with off-centered spots of enhanced gas velocity dispersion. Astron. and Astrophys. 653, A11.
https://doi.org/10.1051/0004-6361/202141012

55. Pulatova N. G., Vavilova I. B., Sawangwit U., Babyk I., Klimanov S. (2015) The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Notic. Roy. Astron. Soc. 447(3). 2209-2223.
https://doi.org/10.1093/mnras/stu2556

56. Pushkarev A. B., Kovalev Y. Y. (2015) Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources. Mon. Notic. Roy. Astron. Soc. 452(4). 4274-4282.
https://doi.org/10.1093/mnras/stv1539

57. Radcliffe J. F., Barthel P. D., Garrett M. A., Beswick R. J., Thomson A. P., Muxlow T. W. B. (2021) The radio emission from active galactic nuclei. Astron. and Astrophys. 649. L9.
https://doi.org/10.1051/0004-6361/202140791

58. Rafter S. E., Crenshaw D. M., Wiita P. J. (2009) Radio properties of low-redshift broad line active galactic nuclei. Astron. J. 137(1). 42.
https://doi.org/10.1088/0004-6256/137/1/42

59. Sandage A. (1967) Optical variation of the nuclei of three compact galaxies together with new photometric data for Seyfert galaxies. Astrophys. J. 150. L177-L181.
https://doi.org/10.1086/180120

60. Sandage A., Wyndham J. D. (1965) On the optical identification of eleven new quasi-stellar radio sources. Astrophys. J. 141. 328.
https://doi.org/10.1086/148125

61. Schinzel F. K., Petrov L., Taylor G. B., Edwards P. G. (2017) Radio follow-up on all unassociated gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog. Astrophys. J. 838(2). 139.
https://doi.org/10.3847/1538-4357/aa6439

62. Sergeev S. G. (2014) Further determination of interband lags between variations in B, V, R, and I bands in active galactic nuclei. Proc. Int. Astron. Union. IAU Symp. 304. 247.
https://doi.org/10.1017/S1743921314003962

63. Sergeev S. G. (2020) Spectral variability of the 3C 390. 3 nucleus for more than 20 years - II. Variability of the broad emission-line profiles and He II 4686  emission- line fluxes. Mon. Notic. Roy. Astron. Soc. 495(1). 971-980.
https://doi.org/10.1093/mnras/staa1210

64. Sergeev S. G., Doroshenko V. T., Golubinskiy Y. V., Merkulova N. I., Sergeeva E. A. (2005) Lag-luminosity relationship for interband lags between variations in B, V, R, and I bands in active galactic nuclei. Astrophys. J. 622. 129.
https://doi.org/10.1086/427820

65. Sergeev S. G., Klimanov S. A., Chesnok N. G., Pronik V. I. (2007) Optical variability of the active galactic nucleus 1E 0754. 6+3928 and reverberation-based mass estimate for the central black hole. Astron. Lett. 33. C. 429-436.
https://doi.org/10.1134/S1063773707070018

66. Sergeev S. G., Pulatova N. G. (2015) Supermassive black holes in galactic nuclei and their relation to the host galaxy properties. In: Vavilova I. B., Bolotin Yu. L., Boyarsky A. M., et al. Dark matter: Observational manifestation and experimental searches. Vol. 3. of the three-volume monography "Dark Energy and Dark Matter in the Universe", Ed. V. M. Shulga. Kyiv: Akademperiodyka. 375. ISBN 978-966-360-239-4.

67. Shimwell T. W., Rttgering H. J. A., Best P. N., Williams W. L., Dijkema T. J., de Gasperin F., Hardcastle M. J., et al. (2017) The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. and Astrophys. 598. A104.
https://doi.org/10.1051/0004-6361/201629313

68. Sramek R. (1975) 5-GHz survey of bright galaxies. Astron. J. 80(10). 771-777.
https://doi.org/10.1086/111810

69. Torbaniuk O., Paolillo M., Carrera F., et al. (2021) The connection between star formation and supermassive black hole activity in the local Universe. Mon. Notic. Roy. Astron. Soc. 506(2). 2619-2637.
https://doi.org/10.1093/mnras/stab1794

70. Ulyanov O. M., Reznichenko O. M., Zakharenko V. V., Antyufeyev A. V., et al. (2019) Creating the RT-32 radio telescope on the basis of Mark-4B antenna system. 1. Modernization project and first results. Radio Phys., Radio Astron. 24(2). 87-116.
https://doi.org/10.15407/rpra24.02.087

71. Ulyanov O. M., Zakharenko V. V., Alekseev E. A., Reznichenko O. M., et al. (2020) Creating the RT-32 radio telescope on the basis of Mark-4B antenna system. 3. Local oscillators and self-noise of the receiving system. Radio Phys., Radio Astron. 25(3). 175-192.
https://doi.org/10.15407/rpra25.03.175

72. Usher P. D., Shen B. S. P., Wright F. W., Shapley H., Hanley C. M. (1969) Long-term behavior of the Seyfert galaxy 3C 120. Astrophys. J. 158. 535-539.
https://doi.org/10.1086/150217

73. Vasylenko A. A., Vavilova I. B., Pulatova N. G. (2020) Isolated AGNs NGC 5347, ESO 438-009, MCG-02-04-090, and J11366-6002: Swift and NuSTAR joined view. Astron. Nachr. 341(8). 801-811.

74. Vavilova I. B., Dobrycheva D. V., Vasylenko M. Y., Elyiv A. A., Melnyk O. V., Khramtsov V. (2021) Machine learning technique for morphological classification of galaxies from the SDSS: I. Photometry-based approach. Astron. and Astrophys. 648. A122.
https://doi.org/10.1051/0004-6361/202038981

75. Vavilova I. B., Dobrycheva D. V., Vasylenko M. Yu., Elyiv A. A., Melnyk O. V., Khramtsov V. (2021) "VizieR Online Data Catalog: SDSS galaxies morphological classification (Vavilova+, 2021)" VizieR On-line Data Catalog: J/A+A/648/A122.
https://doi.org/10.1051/0004-6361/202038981

76. Vavilova I. B., Ivashchenko G. Y., Babyk I. V., Sergijenko O., Dobrycheva D. V., Tor¬ba¬niuk O. O., Vasylenko A. A., Pulatova N. G. (2015) The astrocosmic databases for multi-wavelength and cosmological properties of extragalactic sources. Kosm. Nauka Tehnol. 21(5). 94-107.
https://doi.org/10.15407/knit2015.05.094

77. Vavilova I. B., Khramtsov V., Dobrycheva D. V., Vasylenko M. Yu., Elyiv A. A., Melnyk O. V. (2022). Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 https://doi.org/10.15407/knit2022.01.003

78. Vavilova I. B., Vasylenko A. A., Babyk Iu. V., Pulatova N. G. (2015) X-ray spectral properties of the isolated AGNs: NGC 1050, NGC 2989, ESO 317-038, ESO 438-009. Odessa Astron. Publs. 28. 150-153.
https://doi.org/10.18524/1810-4215.2015.28.70610

79. Vron-Cetty M. P., Vron P. (2006) A catalogue of quasars and active nuclei: 12th edition. Astron. and Astrophys. 455. 773.
https://doi.org/10.1051/0004-6361:20065177

80. Vron-Cetty M. P., Vron P. (2010) A catalogue of quasars and active nuclei: 13th edition. Astron. and Astrophys. 518, A10.
https://doi.org/10.1051/0004-6361/201014188

81. Vlasenko V. P., Mamarev V. M., Ozhynsky V. V., Ulyanov O. M., Zakharenko V. V., Palamar M. I., Chaikovskyi A. V., Fryz S. P. (2021) The method for RT-32 radio telescope error matrix construction in automatic mode. Automatic assesment of tracking errors. Space Sci. and Technol. 27(6). 53-64.
https://doi.org/10.15407/knit2021.06.053

82. Vol'vach A. E., Vol'vach L. N., Kut'kin A. M., Larionov M. G., et al. (2011) Multi-frequency studies of the non-stationary radiation of the blazar 3C 454.3. Astron. Repts. 55(7). 608-615.
https://doi.org/10.1134/S1063772911070092

83. Yang J., Gurvits L. I., Paragi Z., Frey S., Conway J. E., Liu X., Cui L. (2020) A parsec-scale radio jet launched by the central intermediate-mass black hole in the dwarf galaxy SDSS J090613.77+561015.2. Mon. Notic. Roy. Astron. Soc. 495(1). L71-L75.
https://doi.org/10.1093/mnrasl/slaa052