Photometric flattening index of the Solar corona in the Solar cycle

Heading: 
1Pishkalo, MI
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(3):67-78
https://doi.org/10.15407/kfnt2023.03.067
Language: Ukrainian
Abstract: 

The photometric flattening index as a quantitative characteristic of the shape of the solar corona observed during a total solar eclipse was proposed by Ludendorff in the 1930s. The work collected the values of the flattening index for 69 total solar eclipses in 1851…2020 and investigated their relationship with the parameters of the solar activity cycle. The value of the flattening index varies from approximately 0.3…0.4 at the cycle minimum to 0.0… 0.1 at the cycle maximum. The flattening index correlates with the relative sunspot numbers and the phase of the solar cycle. The correlation coefficients between the flattening index and the daily, monthly and monthly smoothed sunspot number are –0.577 (р –7), –0.595 (p –8) and –0.598 (p –8), respectively. The correlation coefficients between the flattening index and the phase of the solar cycle for the rising and declining phases of the cycle are –0.759 (p –6) and 0.660 (p 6), respectively. The observed shape of the solar corona, in particular the value of the flattening index, is determined by the global magnetic field of the Sun, mainly by its dipole component.

Keywords: solar corona, solar cycle, Sun
References: 

1. Birriel J., Teitloff J. (2022) Solar coronal flattening during the total solar eclipse of August 2017 from CATE data. JAAVSO. 50. 1-3.

2. Clette F., Svalgaard L., Vaquero J. M., Cliver E. W. (2014) Revisiting the sunspot num¬ber. A 400-year perspective on the solar cycle. Space Sci. Rev. 186(1-4). 35-103.
https://doi.org/10.1007/s11214-014-0074-2

3. Hansky A. (1897) Die totale Sonnenfinsterniss am 8. August 1896. ber die Corona und den Zusammenhang zwischen ihrer Gestaltung und anderen Erscheinunugsformen der Sonnenthtigkeit. Bull. Acad. Imper. Sci. St.-Petrsbourg. 6(3). 251-270.

4. Koutchmy S., Altrock R. C., Darvann T. A., Dzubenko N. I., Henry T. W., Kim I., Koutch¬my O., Martinez P., Nitschelm C., Rubo G. A., Vial J. (1992) Coronal photo¬metry and analysis of the eclipse corona of July 22, 1990. Astron. and Astrophys. Suppl. Ser. 96. 169-182.

5. Koutchmy S., Nitschelm Ch. (1984) Photometric analysis of the June 11, 1983 solar corona. Astron. and Astrophys. 138. 161-163.

6. Loucif M. L., Koutchmy S. (1989) Solar cycle variations of coronal structures. Astron. and Astrophys. Suppl. Ser. 77. 45-66.

7. Ludendorff H. (1928) ber die Abhngigkeit der form der Sonnenkorona von der Sonnenfleckenhufigkeit Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse. 16. 185-214.

8. Ludendorff H. (1934) Weitere Unteresuchungen ber die Anderungen der Form der Sonnenkorona Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse. 16. 200-220.

9. Markov

10. Markov E., Belik M., Skora T., olc M, olc J., melcer L. (1996) Structure of the white-light corona on October 24, 1995 eclipse. Romanian. Astron. J. Suppl. 6. 17- 20.

11. Markov E., Blk M., Ruin V., Kotr P. (1999) Structure and shape of the white-light corona during March 9, 1997 and February 26, 1998 eclipses. Contribs Astron. Ob¬serv. Scalnate Pleso. 28. 210-215.

12. Neagamvala K. D. (1902) Publs Maharaja Takhtasingji Obs., Poona. 1. 73.

13. Pasachoff J. M., Ruin V. (2022) White-light coronal imaging at the 21 August 2017 total solar eclipse. Solar Phys. 297. 28.
https://doi.org/10.1007/s11207-022-01964-z

14. Petrie G. J. D. (2015) Solar magnetism in the polar regions. Living Rev. Solar Phys. 12. 5.
https://doi.org/10.1007/lrsp-2015-5

15. Pishkalo M. I. (2011) Flattening index of the solar corona and the solar cycle. Solar Phys. 270. 347-362.
https://doi.org/10.1007/s11207-011-9749-y

16. Pishkalo M. I. (2022) Flattening index of the solar corona and the Sun's magnetic field. Solar Phys. 297. 40.
https://doi.org/10.1007/s11207-022-01973-y

17. Pishkalo M. I., Baransky A. R. (2009) Solar corona during the total solar eclipse on August 1, 2008. Kinematics and Phys. Celestial Bodies. 25(6). 315-318.
https://doi.org/10.3103/S088459130906004X

18. Pishkalo M. I., Sadovenko E. V. (2008) Structure and shape of the solar corona during the total solar eclipse on March 29, 2006. Kinematics and Phys. Celestial Bodies. 24(1). 44-50.

19. Ranyard A. C. (1879) Photographs and drawings of the corona. Mem. Royal Astron. Soc. 41. 483-768.

20. Ruin V. (2017) The flattening index of the eclipse white-light corona and magnetic fields. Solar Phys. 292. 24.
https://doi.org/10.1007/s11207-016-1046-3

21. Van de Hulst H. C. (1953) The chromosphere and the corona. In: The Sun, G. P. Kuiper (ed.), Chicago, the University of Chicago Press, Sec. 18.1.

22. Vanyarkha E. S., Vanyarkha N. Ya., Gulyaev R. A. (1993) A new approach to analyzing the photometric properties of the solar corona. Astron. Rep. 37. 639-642.

23. Vasilieva I. E., Pishkalo M. I. (2021) History of sunspot research and forecast of the maximum of solar cycle 25. Kinematics and Phys. Celestial Bodies. 37(4). 200- 211.
https://doi.org/10.3103/S0884591321040073

24. Waldmeier M. (1951) Die Sonnenkorona vom 28. Juli 1851. Z. Astrophys. 30. 1-7.
https://doi.org/10.1007/978-3-0348-6923-2_7

25. Waldmeier M., Arber H., Bachmann H. (1957) Die totale Sonnenfinsternis und die Korona vom 20. Juni 1955. Z. Astrophys. 42. 156-206.

26. Waldmeier M., Weber S. E. (1979) The solar eclipse of February 26, 1979. Astron. Mitt. Eidg. Sternwarte Zrich. 374. 1-12.