Reduction in the electron density produced by the Tonga volcano explosion on January 15, 2022

Heading: 
1Chernogor, LF, Mylovanov, YB
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(4):34-54
https://doi.org/10.15407/kfnt2023.04.034
Language: Ukrainian
Abstract: 

The explosive Tonga volcano belongs to the unique ones. It is of the same order of magnitude as Krakatoa (1883), St. Helens (1980), El Chichón (1982), and Pinatubo (1991) volcanoes. The Tonga volcano uniqueness lies in the fact that the products of the eruption of the Tonga volcano rose to a record height of 50…58 km, whereas the height of the eruption of the most powerful volcano Krakatoa reached only 40…55 km. The thermal energy of the Tonga volcano has been estimated to be 3.9x1018 J, the volcanic explosive index (VEI) to be VEI ≈ 5.8, the volcano magnitude to be M ≈ 5.5, and the intensity to be I ≈ 10.8. We have also estimated the explosion energy to be 16…18 Mt TNT. The proof that the reduction in the ionospheric total electron content (TEC) observed on January 15, 2022, was due to the Tonga volcano explosion, as well as the determination of the principal parameters of the ionospheric «hole», are a problem of great urgency. The scientific objective of this study is to analyze the parameters of the ionospheric «hole» created by the Tonga volcano explosion on January 15, 2022. The ionospheric TEC variations are determined using the measurements of pseudorange and integrated phase data at two frequencies along the path to each GPS satellite. The state of space weather was conducive to observing the ionospheric effects caused by the Tonga volcano explosion. January 13 and 17, 2022 were perturbed the least, and they were taken to be the reference days. The main results are as follows. The temporal variations in TEC were determined to be practically monotonous. Sporadic and quasi-periodic variations took place on the day when the volcano exploded. Sporadic variations represented a decrease in TEC. This effect is termed the ionospheric «hole», which has been proved to be due to the volcano eruption. The time delay of the «hole»increased with an increase in the distance from the volcano to the observation site, while both the absolute value and relative magnitude of the reduction in TEC decreased. Estimates showed that the horizontal size of the hole did not exceed about 10 Mm, and the time delay of its appearance 122 min. The vertical component of the perturbation velocity was estimated to be 36…72 m/s, while the horizontal component to be 2.2 km/s. The ionospheric hole persisted for 120…200 min, the TEC in the ionospheric «hole» was reduced by about 2.5…10 TECU, depending on the distance from the volcano to the observation site, and its relative value exhibited variability in the –17…–34 % limits.

Keywords: ionosphere, ionospheric «hole», total electron content, volcano, «hole» parameters
References: 

1. Chernogor L. F. (2012). Physics and Ecology of Disasters: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. 556. [In Russian].

2. Chernogor L. F. (2023). Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth - atmosphere - ionosphere - magnetosphere system. Space sci. and technol. 29(2), [In Ukrainian].
https://doi.org/10.15407/knit2023.02.054

3. Chernogor L. F., Shevelev M. B. (2023). A statistical study of the explosive waves launched by the Tonga super-volcano on January 15, 2022. Space sci. and technol. 29(5). [In Ukrainian].

4. Aa E., Zhang S.-R., Erickson P. J., Vierinen J., Coster A. J., Goncharenko L. P., Spicher A., Rideout W. (2022). Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Geophys. Res. Lett. 20(7). e2022SW003101.
https://doi.org/10.1029/2022SW003101

5. Aa E., Zhang S.-R., Wang W., Erickson P. J., Qian L., Eastes R., Harding B. J., Immel T. J., Karan D. K., Daniell R. E., Coster A. J., Goncharenko L. P., Vierinen J., Cai X., Spicher A. (2022). Pronounced suppression and X-pattern merging of equatorial ionization anomalies after the 2022 Tonga volcano eruption. J. Geophys. Res.: Space Phys. 127(6). e2022JA030527.
https://doi.org/10.1029/2022JA030527

6. Amores A., Monserrat S., Marcos M., Argeso D., Villalonga J., Jord G., Gomis D. (2022). Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption. Geophys. Res. Lett. 49(6). e2022GL098240.
https://doi.org/10.1029/2022GL098240

7. Astafyeva E., Maletckii B., Mikesell T. D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 49(10). № e2022GL098827.
https://doi.org/10.1029/2022GL098827

8. Burt S. (2022). Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Weather. Special Issue: The January 2022 eruption of Hunga Tonga-Hunga Ha'apai.77(3). 76-81.
https://doi.org/10.1002/wea.4182

9. Carr J. L., Horvth ., Wu D. L., Friberg M. D. (2022). Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha'apai eruption of 15 January 2022. Geophys. Res. Lett. 49. e2022GL098131.
https://doi.org/10.1029/2022GL098131

10. Carvajal M., Seplveda I., Gubler A., Garreaud R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophys. Res. Lett. 49(6). e2022GL098153.
https://doi.org/10.1029/2022GL098153

11. Chen C.-H., Zhang X., Sun Y.-Y., Wang F., Liu T.-C., Lin C.-Y., Gao Y., Lyu J., Jin X., Zhao X., Cheng X., Zhang P., Chen Q., Zhang D., Mao Z., Liu J.-Y. (2022). Individual wave propagations in ionosphere and troposphere triggered by the Hunga Tonga-Hunga Ha'apai underwater volcano eruption on 15 January 2022. Remote Sensing. 14(9). 2179. DOI: 10.3390/rs14092179
https://doi.org/10.3390/rs14092179

12. Cheng K., Huang Y.-N. (1992). Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res. 97(A11). 16995- 17004,
https://doi.org/10.1029/92JA01462

13. Chernogor L. F. (2022). Effects of the Tonga volcano explosion on January 15, 2022. Int. Conf. "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18-21. Kyiv, Ukraine. Book of Abstracts. 12-13.
https://doi.org/10.3997/2214-4609.2022580141

14. Chernogor L. F. (2022). Electrical effects of the Tonga volcano unique explosion on January 15, 2022. Int. Conf. "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18-21. Kyiv, Ukraine. Book of Abstracts. 79-80.
https://doi.org/10.3997/2214-4609.2022580141

15. Chernogor L. F. (2022). Magnetospheric effects that accompanied the explosion of the Tonga volcano on January 15, 2022. Int. Conf. "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 -21. Kyiv, Ukraine. Book of Abstracts. 81-82.

16. Chernogor L. F. (2022). Magnetic Effects of the Unique Explosion of the TongaVolcano. Int. Conf. "Astronomy and Space Physics in the Kyiv University"in part of the World Science Day for Peace and Development. October 18-21. Kyiv, Ukraine. Book of Abstracts. 89-90.

17. Chernogor L. F. (2022). The Tonga super-volcano explosion as a subject of applied physics. Int. Sci. Conf. "Electronics and Applied Physics", APHYS 2022. 18-22 October. Kyiv, Ukraine. 130-131.

18. Chernogor L. F., Mylovanov Y. B., Dorohov V. L. (2022). Ionospheric effects accompanying the January 15, 2022 Tonga volcano explosion. Int. Conf. "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 - 21. Kyiv, Ukraine. Book of Abstracts. 83-84.

19. Chernogor L. F., Shevelev M. B. (2022). Statistical characteristics of atmospheric waves, generated by the explosion of the Tonga volcano on January 15, 2022. Int. Conf. "Astronomy and Space Physics in the Kyiv University" in part of the World Science Day for Peace and Development. October 18 -21. Kyiv, Ukraine. Book of Abstracts. 85-86.

20. Dautermann T., Calais E., Mattioli G. S. (2009). Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrire Hills volcano, Montserrat. J. Geophys. Res. 114. B02202.
https://doi.org/10.1029/2008JB005722

21. Dautermann T., Calais E., Lognonne P., Mattioli G. (2009). Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills volcano, Montserrat. Geophys. J. Int. 179. 1537-1546.
https://doi.org/10.1111/j.1365-246X.2009.04390.x

22. Ern M., Hoffmann L., Rhode S., Preusse P. (2022). The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett.49(10). e2022GL098626.
https://doi.org/10.1029/2022GL098626

23. Harding B. J., Wu Y.-J. J., Alken P., Yamazaki Y., Triplett C. C., Immel T. J., Gasque L. C., Mende S. B., Xiong C. (2022). Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and swarm observations of extreme neutral winds and currents. Geophys. Res. Lett. 49(9). e2022GL098577.
https://doi.org/10.1029/2022GL098577

24. Heidarzadeh M., Gusman A. R., Ishibe T., Sabeti R., epi J. (2022). Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling. Ocean Eng. 261. 112165.
https://doi.org/10.1016/j.oceaneng.2022.112165

25. Heki K. (2006). Explosion energy of the 2004 eruption of the Asama volcano, central Japan, inferred from ionospheric disturbances. Geophys. Res. Lett. 33. L14303,
https://doi.org/10.1029/2006GL026249

26. Igarashi K., Kainuma S., Nishimuta I., Okamoto S., Kuroiwa H., Tanaka T., Ogawa T. (1994). Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J. Atmos. and Terr. Phys. 56(9). 1227- 1234.
https://doi.org/10.1016/0021-9169(94)90060-4

27. Imamura F., Suppasri A., Arikawa T., Koshimura S., Satake K., Tanioka Y. (2022). Preliminary observations and impact in Japan of the tsunami caused by the Tonga volcanic eruption on January 15, 2022. Pure and Appl. Geophys. 179. 1549-1560.
https://doi.org/10.1007/s00024-022-03058-0

28. Johnson J. B. (2003). Generation and propagation of infrasonic airwaves from volcanic explosions. J. Volcanology and Geothermal Res. 121(1-2).1-14.
https://doi.org/10.1016/S0377-0273(02)00408-0

29. Kubota T., Saito T., Nishida K. (2022). Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science. 377(6601). 91-94.
https://doi.org/10.1126/science.abo4364

30. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Gorchakov G. I., Mishenin A. A., Perepelkin V. G., Bush G. A., Skorokhod A. I., Vinogradov Yu. A., Semutnikova E. G., epi J., Medvedev I. P., Gushchin R. A., Kopeikin V. M., Belikov I. B., Gubanova D. P., Karpov A. V., Tikhonov A. V. (2022). Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai volcano, its energy release and impact on aerosol concentrations and tsunami. Pure and Appl. Geophys. 179. 1533-1548.
https://doi.org/10.1007/s00024-022-03046-4

31. Le G., Liu G., Yizengaw E., Englert C. R. (2022). Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophys. Res. Lett. 49(11). e2022GL099002.
https://doi.org/10.1029/2022GL099002

32. Lin J.-T., Rajesh P. K., Lin C. C. H., Chou M.-Y., Liu J.-Y., Yue J., Hsiao T.-Y., Tsai H.-F., Chao H.-M., Kung M.-M. (2022). Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the northern hemisphere after Hunga- Tonga volcano eruptions. Geophys. Res. Lett. 49(8). e2022GL098222.
https://doi.org/10.1029/2022GL098222

33. Liu C. H., Klostermeyer J., Yeh K. C., Jones T. B., Robinson T., Holt O., Leitinger R., Ogawa T., Sinno K., Kato S., Ogawa T., Bedard A. J., Kersley L. (1982). Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J. Geophys. Res. 87(A8). 6281-6290.
https://doi.org/10.1029/JA087iA08p06281

34. Lynett P. (2022). The tsunamis generated by the Hunga Tonga-Hunga Ha'apai volcano on January 15, 2022. 16 March 2022, PREPRINT (Version 1) available at Research Square.
https://doi.org/10.21203/rs.3.rs-1377508/v1

35. Lynett P., McCann M., Zhou Z., et al.(2022). Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha'apai eruption. Nature. 609. 728-733.
https://doi.org/10.1038/s41586-022-05170-6

36. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Prez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. 377(6601). 95-100.
https://doi.org/10.1126/science.abo7063

37. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Prez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Supplementary materials for atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. 377(6601).
https://doi.org/10.1126/science.abo7063

38. Nakashima Y., Heki K., Takeo A., Cahyadi M. N., Aditiya A., Yoshizawa K. (2016). Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth and Planet. Sci. Lett. 434. 112-116.
https://doi.org/10.1016/j.epsl.2015.11.029

39. Otsuka S. (2022). Visualizing Lamb waves from a volcanic eruption using meteo¬rological satellite Himawari-8. Geophys. Res. Lett. 49(8). e2022GL098324.
https://doi.org/10.1029/2022GL098324

40. Poli P., Shapiro N. M.(2022). Rapid Characterization of Large Volcanic Eruptions: Measuring the impulse of the Hunga Tonga Ha'apai explosion from teleseismic waves. Geophys. Res. Lett. 49(8). e2022GL098123
https://doi.org/10.1029/2022GL098123

41. Rajesh P. K., Lin C. C. H., Lin J. T., Lin C. Y., Liu J. Y., Matsuo T., et al. (2022). Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm. Geophys. Res. Lett. 49. e2022GL099798.
https://doi.org/10.1029/2022GL099798

42. Ramrez-Herrera M. T., Coca O., Vargas-Espinosa V. (2022). Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha'apai volcano eruption, Tonga. Pure and Appl. Geophys.179. 1117-1137.
https://doi.org/10.1007/s00024-022-03017-9

43. Roberts D. H., Klobuchar J. A., Fougere P. F., Hendrickson D. H. (1982). A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens. J. Geophys. Res. 87(A8). 6291-6301.
https://doi.org/10.1029/JA087iA08p06291

44. Rozhnoi A., Hayakawa M., Solovieva M., Hobara Y., Fedun V. (2014). Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations. J. Atmos. and Solar-Terr. Phys. 107. 54-59.
https://doi.org/10.1016/j.jastp.2013.10.014

45. Saito S. (2022). Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Earth, Planets and Space. 74. 57.
https://doi.org/10.1186/s40623-022-01619-0

46. Schnepf N. R., Minami T., Toh H., Nair M. C. (2022). Magnetic signatures of the 15 January 2022 Hunga Tonga-Hunga Ha'apai volcanic eruption. Geophys. Res. Lett. 49(10).e2022GL098454
https://doi.org/10.1029/2022GL098454

47. Shinbori A., Otsuka Y., Sori T., Nishioka M., Perwitasari S., Tsuda T., Nishitani N. (2022). Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga Ha'apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space. 74(106).
https://doi.org/10.1186/s40623-022-01665-8

48. Shults K., Astafyeva E., Adourian S. (2016). Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys. 121. 10,303-10,315.
https://doi.org/10.1002/2016JA023382

49. Tanioka Y., Yamanaka Y., Nakagaki T.(2022). Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption. Earth, Planets and Space.74. 61.
https://doi.org/10.1186/s40623-022-01614-5

50. Terry J. P., Goff J., Winspear N., Bongolan V. P., Fisher S. (2022). Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau. Geosci. Lett. 9. 24.
https://doi.org/10.1186/s40562-022-00232-z

51. The Encyclopedia of Volcanoes (Second Edition).-Academic Press, 2015.1421.
https://doi.org/10.1016/B978-0-12-385938-9.00063-8

52. Themens D. R., Watson C., agar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., Jayachandran P. T. (2022). Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett. 49(7). e2022GL098158.
https://doi.org/10.1029/2022GL098158

53. Vergoz J., Hupe P., Listowski C., Le Pichon A., Garcs M. A., Marchetti E., Labazuy P., Ceranna L., Pilger C., Gaebler P., Nsholm S. P., Brissaud Q., Poli P., Shapiro N., De Negri R., Mialle P. (2022). IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth and Planetary Science Letters. 591. 117639.
https://doi.org/10.1016/j.epsl.2022.117639

54. Witze A. (2022). Why the Tongan volcanic eruption was so shocking. Nature. 602. 376-378.
https://doi.org/10.1038/d41586-022-00394-y
https://media.nature.com/original/magazine-assets/d41586-022-00394-y/d41...

55. Wright C. J., Hindley N. P., Alexander M. J., Barlow M., Hoffmann L., Mitchell C. N., Prata F., Bouillon M., Carstens J., Clerbaux C., Osprey S. M., Powell N., Randall C. E., Yue J. (2022). Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha'apai eruption. Nature.
https://doi.org/10.1038/s41586-022-05012-5

56. Yamazaki Y., Soares G., Matzka J. (2022). Geomagnetic detection of the atmospheric acoustic resonance at 3.8 mHz during the Hunga Tonga eruption event on 15 January 2022. J. Geophys. Res.: Space Phys. 127(7). e2022JA030540.
https://doi.org/10.1029/2022JA030540

57. Yuen D. A., Scruggs M. A., Spera F. J., Zheng Y., Hu H., McNutt S. R., Thompson G., Mandli K., Keller B. R., Wei S. S., Peng Z., Zhou Z., Mulargia F., Tanioka Y. (2022). Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano. Earthquake Res. Adv. 2(3). 100134.
https://doi.org/10.1016/j.eqrea.2022.100134

58. Zhang S.-R., Vierinen J., Aa E., Goncharenko L. P., Erickson P. J., Rideout W., Coster A. J., Spicher A. (2022). 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Frontiers in Astron. and Space Sci. 9. 871275.
https://doi.org/10.3389/fspas.2022.871275