AGW spectrum filtering in a horizontally inhomogeneous atmospheric flow
1Fedorenko, AK, Kryuchkov, EI, 1Cheremnykh, OK, 1Zhuk, IT 1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(4):55-67 |
https://doi.org/10.15407/kfnt2023.04.055 |
Language: Ukrainian |
Abstract: The properties of acoustic-gravity waves in the atmosphere can be determined to a greater extent by the characteristics of the propagation medium than by the sources of these disturbances. In the presence of spatial inhomogeneity of atmospheric parameters, significant deviations of the characteristics of AGW from theory are observed. This makes it difficult to experimentally diagnose the waves and find a connection with their potential sources. The analysis of AGW observations on the Dynamics Explorer 2 satellite indicates the predominance of waves with certain spectral characteristics in the polar thermosphere. It was established that the acoustic-gravity waves of large amplitudes are spatially consistent with the regions of strong winds, while AGWs move mainly against the wind. In order to explain the observed properties of AGW, the filtering of the spectrum of these waves in the presence of spatially inhomogeneous wind was investigated in the paper. It is shown that the direction and magnitude of the wave vector change in a special way in the oncoming inhomogeneous wind. At the same time, as the speed of the oncoming wind increases, the wave vector gradually inclines to the horizontal plane. The vertical component of the wave vector rapidly decreases, and its horizontal component tends to some limiting value, which is predominant in observations. In addition, an increase occurs in the frequencies and amplitudes of waves in the oncoming inhomogeneous flow. As a result, high-frequency wave harmonics with a small angle of inclination of the wave vector to the horizontal plane and a characteristic horizontal wavelength will prevail in a strong headwind from a continuous spectrum of atmospheric AGWs that can be generated by a hypothetical source. Since the wave vector and the group velocity vector in the AGW are almost perpendicular to each other, such waves ensure efficient energy transfer in the vertical direction. In this regard, AGWs play an important role in the energy balance of the polar atmosphere, redistributing the energy of horizontal wind currents in the vertical direction. |
Keywords: acoustic-gravity wave, non-homogeneous flow of the atmosphere, spectrum filtering |
1. Fedorenko A. K., Kryuchkov E. I. (2013). Wind control of the propagation of acoustic gravity waves in the polar atmosphere. Geomagn. Aeron., 53(3). 377-388.
https://doi.org/10.1134/S0016793213030055
2. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Zhuk I.T. (2022).Wave disturbances of the atmosphere in a spatially inhomogeneous flow. Space Sci. & Technol. 28(6). 25-33.
https://doi.org/10.15407/knit2022.06.025
3. Bretherton F. P., Garrett C. J. R. (1969). Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. 1969. A. 302. 529-554.
https://doi.org/10.1098/rspa.1968.0034
4. Cheremnykh O. K., Fedorenko A. K., Kryuchkov E. I., Selivanov Y. A. (2019). Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth's and Solar atmospheres. Ann. Geophys. 37(3). 405-415.
https://doi.org/10.5194/angeo-37-405-2019
5. Cheremnykh O., Fedorenko A., Selivanov Y., Cheremnykh S. (2021). Continuous spectrum of evanescent acoustic-gravity waves in an isothermal atmosphere. Mon. Notic. Roy. Astron. Soc. 503(4). 5545-5553.
https://doi.org/10.1093/mnras/stab845
6. Cowling D. H., Webb H. D., Yeh K. C. (1971). Group rays of internal gravity waves in a wind-stratified atmosphere. J. Geophys. Res. 76. 213-220.
https://doi.org/10.1029/JA076i001p00213
7. Didebulidze G. G. (1997). Amplification/damping processes of atmospheric acoustic- gravity waves in horizontal winds with linear shear. Phys. Lett. A. 235(1). 65-70.
https://doi.org/10.1016/S0375-9601(97)00524-0
8. Ding F., Wan W.,Yuan H. (2003). The influence of background winds and attenuation on the propagation of atmospheric gravity waves. J. Atmos. and Solar-Terr. Phys. 65(7). 857-869
https://doi.org/10.1016/S1364-6826(03)00090-7
9. Fedorenko A. K., Bespalova A. V., Cheremnykh O. K., Kryuchkov E. I. (2015) A dominant acoustic-gravity mode in the polar thermosphere. Ann. Geophys. 33. 101-108.
https://doi.org/10.5194/angeo-33-101-2015
10. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Klymenko Yu. O., Yampol¬ski Yu. M. (2018). Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere. J. Atmos. and Solar-Terr. Phys. 178. 17-23.
https://doi.org/10.1016/j.jastp.2018.05.009
11. Heale C. J., Snively J. B. (2015). Gravity wave propagation through a vertically and horizontally inhomogeneous background wind. J. Geophys. Res: Atmos. 120(12). 5931-5950. 10.1002/2015JD023505.
https://doi.org/10.1002/2015JD023505
12. Hines C. O. (1960). Internal gravity waves at ionospheric heights. Can. J. Phys. 38. 1441-1481.
https://doi.org/10.1139/p60-150
13. Innis J. L., Conde M. (2002). Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data. J. Geophys. Res. 107, NO A12.
https://doi.org/10.1029/2002JA009370
14. Johnson F. S., Hanson W. B., Hodges R. R., Coley W. R., Carignan G. R., Spen¬cer N. W. (1995). Gravity waves near 300 km over the polar caps. J. Geophys. Res. 100. 23993-24002.
https://doi.org/10.1029/95JA02858
15. Killeen T. L., Won Y. I., Nicieyewski R. J., Burns A. G. (1995). Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic fields dependencies. J. Geophys. Res. 100. 21327-21342.
https://doi.org/10.1029/95JA01208
16. Lighthill J. Waves in Fluids. Cambridge University Press, 1978. 504 р.
17. Lhr H., Rentz S., Ritter P., Liu H., Husler K. (2007). Average thermospheric wind pattern over the polar regions, as observed by CHAMP. Ann. Geophys. 25. 1093 -1101. (www.ann-geophys.net/25/1093/2007). https://doi.org/10.5194/angeo-25- 1093-2007.
18. Nappo C. J. An introduction to atmospheric gravity waves. 2002. 85. 276.
https://doi.org/10.1016/S0074-6142(02)80272-8
19. Rees D., Fuller-Rowell T. J., Gordon R., Killeen T. L., Hays P. B., Wharton L., Spen¬cer N. W. (1983). A comparison of win observations of the upper thermosphere from the Dynamics Explorer satellite with the predictions of a global time-dependent model. Planet. Space Sci. 31(11). 1299-1314. 10.1016/0032-0633(83)90067-3.
https://doi.org/10.1016/0032-0633(83)90067-3
20. Rogava A. D., Mahajan S. M. (1997). Coupling of sound and internal waves in shear flows. Phys. Rev. E. 55. 1185.
https://doi.org/10.1103/PhysRevE.55.1185
21. Sutherland Bruce R. Internal Gravity Waves. Cambridge University Press, 2010. 102. 394.
https://doi.org/10.1017/CBO9780511780318