Multiscale dissipative processes in the earth’s magnetotail

Heading: 
1Petrenko, B
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(5):83-87
https://doi.org/10.15407/kfnt2023.05.083
Language: Ukrainian
Abstract: 

In the geomagnetic tail, dissipation is the process that stops the cascade transfer of energy in the inertial turbulent range and transforms the energy of turbulent motions into heating. In the case of kinetic turbulence with the dominance of the thermal pressure over the magnetic field pressure, dissipation is also possible in the inertial range. This paper considers an approach for obtaining the distribution of energy conversion rate (multi-scale spectrum) of the electromagnetic field with the preliminary involvement of the multi-spacecraft method of calculating the current density. For the first time, a multiscale spectrum of energy conversion rate in the tail of the Earth’s magnetosphere was obtained and analyzed. Measurements of magnetic and electric fields from MMS mission spacecraft in the region of the current sheet and during high-speed plasma flows in the plasma sheet were used during 2021/09/08.

Keywords: current sheet, electromagnetic field, energy conversion, geomagnetic tail, MMS
References: 

1. Arzamasskiy L., Kunz M. W., Squire J., Quataert E., Schekochihin A. A. (2023). Kinetic turbulence in collisionless high- plasmas. Phys. Rev. X. 13(2), 021014. https://doi.org/10.1103/PhysRevX.13.021014

2. Burch J. L., Moore T. E., Torbert R. B., Giles B. (2016). Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199. 5-21. https://doi.org/10.1007/s11214-015-0164-9

3. Dunlop M. W., Dong X. C., Wang T. Y., Eastwood J. P., Robert P., Haaland S., ..., De Keyser J. (2021). Curlometer technique and applications. J. Geophys. Res.: Space Phys. 126(11). e2021JA029538. https://doi.org/10.1029/2021JA029538

4. Ergun R. E., Tucker S., Westfall J., Goodrich K. A., Malaspina D. M., Summers D., ..., Cully C. M. (2016). The axial double probe and fields signal processing for the MMS mission. Space Sci. Rev. 199. 167-188. https://doi.org/10.1007/s11214-014-0115-x

5. Hamrin M., Marghitu O., Rnnmark K., Klecker B., Andr M., Buchert S., ..., Vaivads A. (2006). Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions. Ann. geophys. 24(2), 637-649). Copernicus GmbH. https://doi.org/10.5194/angeo-24-637-2006

6. Hamrin M., Pitknen T., Norqvist P., Karlsson T., Nilsson H., Andr M., ..., Dandouras I. (2014). Evidence for the braking of flow bursts as they propagate toward the Earth. J. Geophys. Res.: Space Phys. 119(11). 9004-9018. https://doi.org/10.1002/2014JA020285

7. He J., Duan D., Wang T., Zhu X., Li W., Verscharen D., ..., Burch J. (2019). Direct measurement of the dissipation rate spectrum around ion kinetic scales in space plasma turbulence. Astrophys. J. 880(2). 121. https://doi.org/10.3847/1538-4357/ab2a79

8. He J., Zhu X., Verscharen D., Duan D., Zhao J., Wang T. (2020). Spectra of diffusion, dispersion, and dissipation for kinetic Alfvnic and compressive turbulence: Comparison between kinetic theory and measurements from MMS. Astrophys. J. 898(1). 43. https://doi.org/10.3847/1538-4357/ab9174

9. Lindqvist P. A., Olsson G., Torbert R. B., King B., Granoff M., Rau D., ..., Tucker S. (2016). The spin-plane double probe electric field instrument for MMS. Space Sci. Revs. 199, 137-165. https://doi.org/10.1007/s11214-014-0116-9

10. Russell C. T., Anderson B. J., Baumjohann W., Bromund K. R., Dearborn D., Fischer D., et al. (2016). The magnetospheric multiscale magnetometers. Space Sci. Revs. 199(1-4), 189-256. https://doi.org/10.1007/s11214-014-0057-3