Propagation of the IGb14 reference frame on the territory of Ukraine based on results of the analysis of gnss observations for GPS weeks 2106—2237

Khoda, O
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(1):75-87
https://doi.org/10.15407/kfnt2024.01.075
Language: Ukrainian
Abstract: 

From May 17, 2020 to November 26, 2022 (GPS weeks 2106—2237) all products of the International GNSS Service (IGS) — precise ephemerides of GPS and GLONASS satellites, coordinates and velocities of permanent GNSS stations, etc. — were based on the IGb14 reference frame, the second IGS realization of the release of the International Terrestrial Reference Frame ITRF2014. Observations of GNSS satellites at permanent stations located in Ukraine and in the Eastern Europe for this period were processed in the GNSS Data Analysis Centre of the Main Astronomical Observatory (MAO) NAS of Ukraine. The processing was carried out with the Bernese GNSS Software ver. 5.2 according to the requirements of the EUREF Permanent GNSS Network (EPN), that were relevant at that time. In total, observations on 344 GNSS stations, including 273 Ukrainian stations belonging to the following operators of GNSS networks: MAO NAS of Ukraine, StateGeoCadastre of Ukraine (UPN GNSS), PJSC System Solutions (System.NET), NU Lviv Polytechnic (GeoTerrace), Navigation and Geodetic Center (NGC.net), Kiev Institute of Land Relations (KyivPOS), Coordinate navigation maintenance system of Ukraine (NET.Spacecenter), E.P.S. LLC, UA-EUPOS/ZAKPOS, TNT TPI company (RTKHUB Network), and KMC LLC, were processed. The IGb14 reference frame was set by No-Net-Translation conditions on the coordinates of the EPN Class A stations from the EPN C2130 catalogue. As result, the station coordinates in the IGb14 reference frame and the zenith tropospheric delays for all stations were estimated. The mean repeatabilities for components of station coordinates for all weeks (the characteristics of the precision of the received daily and weekly solutions) are in the following ranges: for north component — from 0.62 mm to 1.35 mm (average value is 0.98 mm), for east component — from 0.73 mm to 1.45 mm (average value is 1.09 mm) with outliers of 2.39 mm and 1.81 mm for GPS weeks 2159 and 2168 respectively, for height component — from 2.52 mm to 6.36 mm (average value is 3.89 mm).

Keywords: GNSS, IGb14 reference frame, permanent stations
References: 

1. Khoda O. (2023) Analysis of GNSS observations (GPS weeks 1934-2105) for the propagation of the IGS14 reference frame on the territory of Ukraine. Kinematics and Phys. Celestial Bodies. 39(3). 173-179. https://doi.org/10.3103/S0884591323030054

2. Altamimi Z., Rebischung P., Mtivier L., Collilieux X. (2017) Analysis and results of ITRF2014. IERS Technical Note No. 38. Frankfurt am Main: Verlag des Bundesamts fr Kartographie und Geodsie. 76 p.

3. Antenna Calibrations. National Geodetic Survey. (2022) URL: https://geodesy.noaa.gov/ANTCAL/ (Last accessed 01.03.2023).

4. Bernese GNSS Software Version 5.2. (2015) (Eds Dach R., Lutz S., Walser P., Fridez P.). Berne: Astronomical Institute, University of Berne. 894 p. DOI: 10.7892/boris.72297.

5. Boehm J., Werl B., Schuh H. (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data. J. Geophys. Res. 111 (B2). Article B02406. https://doi.org/10.1029/2005JB003629

6. Bos M. S., Scherneck H.-G. (2022) Ocean tide loading provider. Onsala Space Observatory. URL: http://holt.oso.chalmers.se/loading/ (Last accessed 01.03.2023).

7. Bruyninx C., Legrand J., Fabian A., Pottiaux E. (2019) GNSS metadata and data validation in the EUREF Permanent Network, GPS Solut. 23 (4). Article 106. https://doi.org/10.1007/s10291-019-0880-9

8. Dach R., Schaer S., Arnold D., Kalarus M., Prange L., Stebler P., Villiger A., Jaeggi A. (2020) CODE final product series for the IGS. Astronomical Institute, University of Bern. DOI: 10.7892/boris.75876.4. URL: http://www.aiub.unibe.ch/download/CODE (Last accessed 01.03.2023).

9. Dawidowicz K. (2018) IGS08.ATX to IGS14.ATX change dependent differences in a GNSS-derived position time series. Acta Geodynamica et Geomaterialia. 15 (4). 363-378. https://doi.org/10.13168/AGG.2018.0027

10. Guidelines for the EPN Analysis Centres. (2022) 9 p. URL: http://epncb.eu/_documentation/guidelines/guidelines_analysis_centres.pdf (Last accessed 01.03.2023).

11. IERS Conventions (2010). (Eds Petit G., Luzum B.). IERS Technical Note No. 36. Frankfurt am Main. 179 p.

12. Johnston G., Riddell A., Hausler G. (2017) The International GNSS Service. Eds Teunissen P. J. G., Montenbruck O., Springer Handbook of Global Navigation Satellite Systems (1st ed., P. 967-982). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1

13. Letellier T. (2004) Etude des ondes de mare sur les plateaux continentaux: Thse doctorale. Universit de Toulouse III, Ecole Doctorale des Sciences de l'Univers, de l'Environnement et de l'Espace. 237 p.

14. Lyard F., Lefevre F., Letellier T., Francis O. (2006) Modelling the global oceantides: modern insights from FES2004. Ocean Dyn. 56(5-6). 394-415. https://doi.org/10.1007/s10236-006-0086-x DOI: 10.1007/s10236-006-0086-x. https://doi.org/10.1007/s10236-006-0086-x

15. Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K. (2012) The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 117(B4). Article B04406. DOI: 10.1029/2011JB008916. https://doi.org/10.1029/2011JB008916

16. Ray R. D., Ponte R. M. (2003) Barometric tides from ECMWF operational analyses. Ann. Geophys. 21 (8). 1897-1910. DOI: 10.5194/angeo-21-1897-2003. https://doi.org/10.5194/angeo-21-1897-2003

17. Ray R. D., Steinberg D. J., Chao B. F., Cartwright D. E. (1994) Diurnal and semidiurnal variations in the Earth's rotation rate induced by oceanic tides. Science. 264 (5160). 830-832. DOI: 10.1126/science.264.5160.830. https://doi.org/10.1126/science.264.5160.830

18. Rebischung P. (2020) Switch to IGb14 reference frame. IGSMAIL-7921. URL: https://lists.igs.org/pipermail/igsmail/2020/007917.html (Last accessed 01.03.2023).

19. Rebischung P., Schmid R. (2016) IGS14/igs14.atx: a new framework for the IGS products. Presented at the December 2016 Conference: AGU Fall Meeting. San Francisco (USA). URL: https://www.researchgate.net/profile/Ralf-Schmid-2/ publication/311654495_IGS14igs14atx_a_new_framework_for_the_IGS_products/links/5852b2cf08ae0c0f32226ee7/IGS14-igs14atx-a-new-framework-for-the-IGS-products.pdf (Last accessed 01.03.2023).

20. Standish E. M. (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405. Jet Propulsion Laboratory, Interoffice Memorandum. IOM 312.F-98-048. 18 p. URL: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf (Last accessed 01.03.2023).