Investigating attraction zones in the photogravitational four-body problem: effects of asteroid belt and small perturbations in coriolis and centrifugal forces

Kumar, V, Kumar, N
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(2):54-76
https://doi.org/10.15407/kfnt2024.02.054
Language: Ukrainian
Abstract: 

In this study, we have examined the effects of small perturbations on the Coriolis force and centrifugal force in the photogravitational restricted four-body problem within the circular asteroid belt. We investigate the existence, parametric evolution, and stability of equilibrium points considering various parameters. Our findings reveal that a small perturbation in the centrifugal force significantly influences the location of equilibrium points, while a perturbation in the Coriolis force has no impact on their location. To illustrate the permissible region of motion for the infinitesimal mass relative to the Jacobi constant, we plot the zero-velocity curves. Furthermore, we conduct a comprehensive analysis to determine the influence of the Coriolis force () and centrifugal force () on the geometry of the basins of convergence (BoCs). In order to quantify the unpredictability of the BoCs, we thoroughly study the basin entropy. Significantly, we have found the presence of unpredictable (fractal) regions in close proximity to the boundaries of the basins of convergence.

Keywords: basin entropy, centrifugal force, Coriolis force, fractal, Newton-Raphson basins of convergence
References: 

1. Asique M. C., Prasad U., Hassan M. R., Suraj M. S. (2016). On the photogravitational R4BP when the third primary is a triaxial rigid body. Astrophys. and Space Sci. 361(12), 1-18. https://doi.org/10.1007/s10509-016-2959-x 2. Atash A. A., Selim F. A., Al-Khaled K., Hassan I. A., Abouelmagd E. I. (2020). Periodic orbit in the frame work of restricted three bodies under the asteroids belt effect. Appl. Math. and Nonlinear Sci. 5(2), 157-176. https://doi.org/10.2478/amns.2020.2.00022 3. Baltagiannis A. N., Papadakis K. E. (2011). Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurcation and Chaos, 21(08), 2179-2193. https://doi.org/10.1142/S0218127411029707 4. Bhatnagar K. B., Hallan P. P. Effect of perturbations in Coriolis and centrifugal forces on the stability of libration points in the restricted problem. Celest. Mech. 18(2), 105-112 (1978). https://doi.org/10.1007/BF01228710 5. Bhatnagar K. B., Hallan P.P. The effect of perturbations in Coriolis and centrifugal forces on the nonlinear stability of equilibrium points in the restricted problem of three bodies. Celest. Mech. 30, 97 (1983). https://doi.org/10.1007/BF01231105 6. Daza A., Bertrand G., Gury-Odelin D., Wagemakers A., Sanjun M. A. F., 2017. Chaotic dynamics and fractal structures in experiments with cold atoms. Phys. Rev. A. 95, 013629. https://doi.org/10.1103/PhysRevA.95.013629 7. Daza A., Wagemakers A., Georgeot B., Gury-Odelin, D., Sanjun, M.A.F., 2016. Basin entropy: a new tool to analyze uncertainty in dynamical systems. Sci. Rep. 6, 31416. https://doi.org/10.1038/srep31416 8. Daza A., Wagemakers A., Sanjun M. A. (2022). Classifying basins of attraction using the basin entropy. Chaos, Solitons and Fractals, 159, 112112. https://doi.org/10.1016/j.chaos.2022.112112 9. Douskos C. N. (2010). Collinear equilibrium points of Hill's problem with radiation and oblateness and their fractal basins of attraction. Astrophys. and Space Sci. 326(2), 263-271. https://doi.org/10.1007/s10509-009-0213-5 10. Falaye B. J. (2015). Effect of oblateness, radiation and a circular cluster of material points on the stability of equilibrium points in the restricted four-body problem. Few-Body Systems, 56(1), 29-40. https://doi.org/10.1007/s00601-014-0922-3 11. Grebogi C., McDonald S. W., Ott E., Yorke J. A. Final state sensitivity: an obstruction to predictability. Phys. Lett. A. 99, 415-418 (1983) https://doi.org/10.1016/0375-9601(83)90945-3 12. Hadjidemetriou J. D. (1980). The restricted planetary 4-body problem. Celest. Mech., 21(1), 63-71. https://doi.org/10.1007/BF01230248 13. Krolyi G., Pntek ., Scheuring I., Tl T., Toroczkai Z. (2000). Chaotic flow: the physics of species coexistence. Proc. Nat. Acad. Sci. 97(25), 13661-13665. https://doi.org/10.1073/pnas.240242797 14. Kumar V., Arif M., Ullah M. S. (2021). Capricious basins of attraction in photogravitational magnetic binary problem. New Astron. 83, 101475. https://doi.org/10.1016/j.newast.2020.101475 15. Kumar V., Kumar N. Unveiling the attracting regions in photogravitational four-body problem including the effect of asteroids belts. Astron. Reps. 67.6 (2023): 667-683. https://doi.org/10.1134/S1063772923060082 16. Kumar V., Sharma P., Aggarwal R., Yadav S., Kaur B. (2020). The unpredictability of the basins of attraction in photogravitational Chermnykh's problem. Astrophys. and Space Sci. 365, 101. https://doi.org/10.1007/s10509-020-03815-4 17. Kushvah B. S. (2008) Linear stability of equilibrium points in the generalized photogravitational Chermnykh's problem. Astrophys. and Space Sci. 318, 41-50. https://doi.org/10.1007/s10509-008-9898-0 18. Mahato G., Pal A. K., Alhowaity S., Abouelmagd E. I., Kushvah B. S. (2022). Effect of the planetesimal belt on the dynamics of the restricted problem of 2 + 2 bodies. Appl. Sci. 12(1), 424. https://doi.org/10.3390/app12010424 19. Menck P. J., Heitzig J., Marwan N., Kurths J. (2013) How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89-92. https://doi.org/10.1038/nphys2516 20. Michalodimitrakis M. (1981). The circular restricted four-body problem. Astron. and Astrophys. 75, 289-305. https://doi.org/10.1007/BF00648643 21. Mittal A., Agarwal R., Suraj M. S., Arora M. (2018). On the photo-gravitational restricted four-body problem with variable mass. Astrophys. and Space Sci. 363(5), 1-23. https://doi.org/10.1007/s10509-018-3321-2 22. Miyamoto W., Nagai R. Three-dimensional models for the distribution of mass in galaxies. PASJ. 27, 533 (1975) 23. Osorio-Vargas J. E., Dubeibe F. L., Guillermo A. Gonzlez. Orbital dynamics in the photogravitational restricted four-body problem: Lagrange configuration. Phys. Lett. A. 384.15 (2020): 126305. https://doi.org/10.1016/j.physleta.2020.126305 24. Ramrez J. A. Zepeda, Alvarez-Ramrez M. (2022) Equilibrium points and their linear stability in the planar equilateral restricted four-body problem: A review and new results. arXiv preprint arXiv:2206.14856. https://doi.org/10.1007/s10509-022-04108-8 25. Singh J., Omale S. O., Inumoh L. O., Ale F. (2021). Impact of radiation pressure and circumstellar dust on motion of a test particle in Manev's field. Astrodynamics, 5(2), 77-89. https://doi.org/10.1007/s42064-020-0071-z 26. Singh J., Taura J. J. (2014) Effects of zonal harmonics and a circular cluster of material points on the stability of triangular equilibrium points in the R3BP. Astrophys. and Space Sci. 350, 127-132. https://doi.org/10.1007/s10509-013-1719-4 27. Suraj M. S., Alhowaity S. S., Aggarwal R. (2022). Fractal basins of convergence in the restricted rhomboidal six-body problem. New Astron. 101798. https://doi.org/10.1016/j.newast.2022.101798 28. Suraj M. S., Asique M. C., Prasad U., Hassan M. R., Shalini K. (2017). Fractal basins of attraction in the restricted four-body problem when the primaries are triaxial rigid bodies. Astrophys. and Space Sci. 362(11), 1-16. https://doi.org/10.1007/s10509-017-3188-7 29. Wolfram Research, Inc. (2017) Mathematica Version 11.0.1. Champaign, IL 30. Zotos E. E. (2017). Revealing the basins of convergence in the planar equilateral restricted four-body problem. Astrophys. and Space Sci. 362(1), 1-19. https://doi.org/10.1007/s10509-016-2973-z 31. Zotos E. E., Chen W., Abouelmagd E. I., Han H. (2020) Basins of convergence of equilibrium points in the restricted three-body problem with modified gravitational potential. Chaos, Solitons & Fractals. 134, 109704. https://doi.org/10.1016/j.chaos.2020.109704 32. Zotos E. E., Sanam Suraj M. (2018). Basins of attraction of equilibrium points in the planar circular restricted five-body problem. Astrophys. and Space Sci. 363(2), 1-16. https://doi.org/10.1007/s10509-017-3240-7