Role of non-stationary high-energy processes and atmospheric turbulence in electrical interaction of geospheres

Heading: 
1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(4):22-44
https://doi.org/10.15407/kfnt2024.04.022
Language: Ukrainian
Abstract: 

The electrical mechanism of interaction between subsystems in the Earth — atmosphere — ionosphere — magnetosphere system is currently the least studied and substantiated. Moreover, some experts doubt its existence. This paper is devoted to the study of the mechanisms of generation and propagation of time-varying electric fields under the influence of non-stationary high-energy sources of various physical nature and atmospheric turbulence enhanced by these sources, which is an urgent issue. Four options of penetration of electric fields from the atmospheric surface layer into the ionosphere have been proposed. Estimates and numerical calculations of electrical parameters depending on disturbances in the electric charge density and the characteristics of atmospheric turbulence for a number of high-energy sources have been carried out. It has been shown that disturbances arising in the atmospheric surface layer are capable of penetrating into the ionosphere and even the magnetosphere.

Keywords: atmospheric current, electric field, electrical mechanism, high-energy sources, skin depth, specific electrical conductivity, turbulence
References: 

1. Dementyeva S.O., Mareev E.A. (2018). On the Contribution of Turbulence to the Electrification of Thunderclouds. Izv. Atmos. Ocean. Phys. 54(1), 25-31.
https://doi.org/10.1134/S0001433818010048

2. Isaev N. V., Kostin V. M., Belyaev G. G., Ovcharenko O. Y., Trushkina E. P. (2010). Disturbances of the topside ionosphere caused by typhoons. Geomag. Aeron. 50. 243-255.
https://doi.org/10.1134/S001679321002012X

3.Isaev N. V., Sorokin V. M., Chmyrev V. M., Serebryakova O. N. (2002). Ionospheric electric fields related to sea storms and typhoons. Geomagn. Aeron. 42. 638-643.

4. Isaev N. V., Sorokin V. M., Chmyrev V. M., Serebryakova O. N., Yashchenko A. K. (2002). Disturbance of the electric field in the ionosphere by sea storms and typhoons. Cosm. Res. 40. 547-553.
https://doi.org/10.1023/A:1021549612290

5. Lizunov G. V., Skorokhod Т. V., Korepanov V. Ye. (2020). Atmospheric gravity waves among other physicalmechanisms of seismic-ionospheric coupling. Space Sci. Technol. 26(3). 55-80.
https://doi.org/10.15407/knit2020.03.055

6. Chernogor L. F. (2003). Physics of Earth, atmosphere, and geospace from the standpoint of system paradigm. Radio Phys. Radio Astron. 8(1). 59-106. [in Russian].

7.Chernogor L. F. (2006). The tropical cyclone as an element of the Earth - atmosphere - ionosphere - magnetosphere system. Space Sci. Technol. 12(2/3). 16-36. [in Russian]. DOI: 10.15407/knit2006.02.016
https://doi.org/10.15407/knit2006.02.016

8.Chernogor L. F. (2008). On nonlinearity in nature and science: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

9. Chernogor L. F. (2012). Physics and ecology of disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

10. Chernogor L. F. (2023). Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth-atmosphere-ionosphere-magnitosphere system. Space Sci. and Technol. 29. 54-77.
https://doi.org/10.15407/knit2023.02.054

11. Bliokh P. (1999). Variations of electric fields and currents in the lower ionosphere produced by conductivity growth of the air above the future earthquake center. In Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Hayakawa M. (Ed.). Tokyo: TERRAPUB. 829-838.

12. Bortnik J., Inan U. S., Bell T. F. (2006). Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology. J. Geophys. Res. 111. DOI: 10.1029/2005JA011182
https://doi.org/10.1029/2005JA011182

13. Boka J., auli P. (2001). Observations of gravity waves of meteorological origin in the F-region ionosphere, Phys. Chem. Earth. 26. 425-428.
https://doi.org/10.1016/S1464-1917(01)00024-1

14. Chernogor L. F. (2011). The Earth - atmosphere - geospace system: Main properties and processes. Int. J. Remote Sens. 32. 3199-3218.
https://doi.org/10.1080/01431161.2010.541510

15. Chernogor L. F. (2023). A tropical cyclone or typhoon as an element of the Earth - atmosphere - ionosphere - magnetosphere system: Theory, simulations, and observations. Remote Sensing. 15. 4919.
https://doi.org/10.3390/rs15204919

16. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2023). Effects of the super-powerful tropospheric western Pacific phenomenon of September-October 2018 on the ionosphere over China: Results from oblique sounding. Ann. Geo¬phys. 41. 173-195.
https://doi.org/10.5194/angeo-41-173-2023

17. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y., Luo Y. (2021). Supertyphoon Hagibis action in the ionosphere on 6-13 October 2019: Results from multi-frequency multiple path sounding at oblique incidence. Adv. Space Res. 67, 2439-2469.
https://doi.org/10.1016/j.asr.2021.01.038

18. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y., Luo Y. (2022). Disturbances in the ionosphere that accompanied typhoon activity in the vicinity of China in September 2019. Radio Sci. 57.
https://doi.org/10.1029/2022RS007431

19. Chernogor L. F., Rozumenko V. T. (2008). Earth - atmosphere - geospace as an open nonlinear dynamical system. Radio Phys. Radio Astron. 13. 120-137.

20. Chou M. Y., Lin C. C. H., Yue J., Tsai H. F., Sun Y. Y., Liu J. Y., Chen C. H. (2017). Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophys. Res. Let. 44. 1219-1226.
https://doi.org/10.1002/2016GL072205

21. Chum J., Liu J.-Y., indelov K., Podolsk T. (2018). Infrasound in the ionosphere from earthquakes and typhoons. J. Atmos. Sol.-Terr. Phys. 171. 72-82.
https://doi.org/10.1016/j.jastp.2017.07.022

22. Das B., Sarkar S., Haldar P. K., Midya S. K., Pal S. (2021). D-region ionospheric disturbances associated with the Extremely Severe Cyclone Fani over North Indian Ocean as observed from two tropical VLF stations. Adv. Space Res. 67. 75-86.
https://doi.org/10.1016/j.asr.2020.09.018

23. Denisenko V. V., Ampferer M., Pomozov E. V., Kitaev A. V., Hausleitner W., Stangl G., Biernat H. K.(2013). On electric field penetration from ground into the ionosphere.J. Atmos. Sol.-Terr. Phys. 102. 341-353.
https://doi.org/10.1016/j.jastp.2013.05.019

24. Denisenko V. V., Boudjada M. Y., Horn M., Pomozov E. V., Biernat H. K., Schwingenschuh K., Lammer H., Prattes G., Cristea E. (2008). Ionospheric conductivity effects on electrostatic field penetration into the ionosphere. Nat. Hazards Earth Syst. Sci. 8. 1009-1017.
https://doi.org/10.5194/nhess-8-1009-2008

25. Denisenko V. V., Nesterov S. A., Boudjada M. Y., Lammer H. (2018). A mathematical model of quasistationary electric field penetration from ground to the ionosphere with inclined magnetic field. J. Atmos. Sol.-Terr. Phys. 179. 527-537.
https://doi.org/10.1016/j.jastp.2018.09.002

26. Denisenko V., Pomozov E. (2010). Penetration of an Electric Field from the Surface Layer of the Atmosphere into the Ionosphere. Sol.-Terr. Phys. 16. 70-75. [In Russian].

27. Gossard E. E., Hooke W. H. (1975). Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation. Amsterdam: Elsevier Scientific Publ. Co.

28. Holzworth R. H., Kelley M. C., Siefring C. L., Hale L. C., Mitchell J. D. (1985). Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. 2. Direct current electric fields and conductivity. J. Geophys. Res. 90. 9824- 9830.
https://doi.org/10.1029/JA090iA10p09824

29. Hung R. J., Kuo J. P. (1978). Ionospheric observation of gravity-waves associated with Hurricane Eloise. J. Geophys. 45. 67-80.

30. Inan U., Piddyachiy D., Peter W., Sauvaud J., Parrot M. (2007). DEMETER satellite observations of lightning-induced electron precipitation. Geophys. Res. Lett. 34.
https://doi.org/10.1029/2006GL029238

31. Kelley M. C., Siefring C. L., Pfaff R. P., Kintner P. M., Larsen M., Green R., Holzworth R. H., Hale L. C., Mitchell J. D., Le Vine D. (1985). Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. 1. Campaign overview and initial ionospheric results. J. Geophys. Res. 90. 9815-9823.
https://doi.org/10.1029/JA090iA10p09815

32. Kong J., Yao Y., Xu Y., Kuo C., Zhang L., Liu L., Zhai C. (2017). A clear link connecting the troposphere and ionosphere: Ionospheric reponses to the 2015 Typhoon Dujuan. J. Geod. 91. 1087-1097.
https://doi.org/10.1007/s00190-017-1011-4

33. Krishnam Raju D. G., Rao M. S., Rao B. M., Jogulu C., Rao C. P., Ramanadham R. (1981). Infrasonic oscillations in the F2 region associated with severe thunderstorms. J. Geophys. Res. 86. 5873-5880.
https://doi.org/10.1029/JA086iA07p05873

34. Leblanc F., Aplin K., Yair Y., Harrison G., Lebreton J. P., Blanc M. (2008). Planetary Atmospheric Electricity. New York: Springer.
https://doi.org/10.1007/978-0-387-87664-1

35. Lizunov G., Skorokhod T., Hayakawa M., Korepanov V. (2020). Formation of ionospheric precursors of earthquakes - probable mechanism and its substantiation. Open J. Earthq. Res. 9. 142-169.
https://doi.org/10.4236/ojer.2020.92009

36. MacGorman D. R., Rust W. D. (1998). The electrical nature of storms. Oxford: Oxford University Press.

37. Marshall R. A. (2012). An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J. Geophys. Res. 117. id: A03316.
https://doi.org/10.1029/2011JA017408

38. Mikhailova G. A., Mikhailov M. Y., Kapustina O. V. (2000). ULF-VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean. Int. J. Geomag. Aeron. 2. 153-158.

39. Mikhailova G. A., Mikhailov M. Y., Kapustina O. V. (2002). Variations of ULF-VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean. Adv. Space Res. 30. 2613-2618.
https://doi.org/10.1016/S0273-1177(02)80358-1

40. Nickolaenko A. P., Hayakawa M. (1995). Heating of the lower ionosphere electrons by electromagnetic radiation of lightning discharges. Geophys. Res. Lett. 22. 3015- 3018.
https://doi.org/10.1029/95GL01982

41. Pulinets S., Davidenko D. (2014). Ionospheric precursors of earthquakes and global electric circuit. Adv. Space Res. 53. 709-723.
https://doi.org/10.1016/j.asr.2013.12.035

42. Sedunov Y. S., Avdiushin S. I., Borisenkov E. P., Volkovitsky O. A., Petrov N. N., Reitenbakh R. G., Smirnov V. I., Chernikov A. A. (Eds.) (1991). Atmosphere Handbook. Leningrad: Gidrometeoizdat.[in Russian].

43. indelova T., Bureov D., Chum J., Hruka F. (2009). Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv. Space Res. 43. 1644-1651. DOI: 10.1016/j.asr.2008.08.022
https://doi.org/10.1016/j.asr.2008.08.022

44. Sorokin V. M., Chmyrev V. M., Hayakawa M. (2020). A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere. Open J. Earthq. Res. 9. 113-141.
https://doi.org/10.4236/ojer.2020.92008

45. Sorokin V. M., Isaev N. V., Yaschenko A. K., Chmyrev V. M., Hayakawa M. (2005). Strong DC electric field formation in the low latitude ionosphere over typhoons. J. Atmos. Solar-Terr. Phys. 67. 1269-1279.
https://doi.org/10.1016/j.jastp.2005.06.014

46. Volland H. (1985). Atmospheric Electrodynamics. Berlin: Springer.
https://doi.org/10.1007/978-3-642-69813-2

47. Voss H. D., Imhof W. L., Walt M., Mobilia J., Gaines E. E., Reagan J. B., Inan U. S., Helliwell R. A., Carpenter D. L., Katsufrakis J. P., et al. (1984). Lightning-induced electron precipitation. Nature. 312. 740-742.
https://doi.org/10.1038/312740a0

48. Voss H. D.,Walt M., Imhof W. L., Mobilia J., Inan U. S. (1998). Satellite observations of lightning-induced electron precipitation. J. Geophys. Res. 103. 11725-11744.
https://doi.org/10.1029/97JA02878

49. Yutsis V., Rapoport Y., Grimalsky V., Grytsai A., Ivchenko V., Petrishchevskii S., Fedorenko A., Krivodubskij V. (2021). ULF Activity in the Earth Environment: Penetration of Electric Field from the Near-Ground Source to the Ionosphere under Different Configurations of the Geomagnetic Field. Atmosphere. 12. 801.
https://doi.org/10.3390/atmos12070801

50. Zhao Y., Deng Y., Wang J.-S., Zhang S.-R., Lin C. Y. (2020). Tropical cyclone-indu¬ced gravity wave perturbations in the upper atmosphere: GITM-R simulations. J. Geophys. Res. 125.
https://doi.org/10.1029/2019JA027675

51. Zheng Y.,Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Luo Y. (2022). Disturbances in the ionosphere and distortion of radio wave characteristics that accompanied the super typhoon Lekima event of 4-12 August 2019. J. Geophys. Res. 127.
https://doi.org/10.1029/2022JA030553