A method for controlling the reliability of ground-based polarimetric measurements of the atmosphere

Ovsak, OS
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(4):78-89
https://doi.org/10.15407/kfnt2024.04.078
Language: Ukrainian
Abstract: 

Formation processes of polarization parameters spatial distribution in the Earth’s atmosphere are considered. Among the modern development of devices for atmospheric polarimetric measurements, the perspective of creating equipment for ground-based measurements is highlighted. Determining method for polarization parameters at the celestial hemisphere is described, when the ground-based polarimetric measurements data are in use. A spatial diagram of the mutual location of the main elements in the process of light scattering is presented. Calculating formulas for the angle (AoLP) and for the degree (DoLP) of the sky linear polarization are represented for light scattering by a purely gaseous component of the atmosphere. The impact on the specified sky polarization parameters due to changes in the characteristics of the atmospheric aerosol is considered. The key idea of the proposed method of controlling the reliability of ground-based polarimetric measurements is to use the stability of the spatial distribution of the AoLP parameter in the celestial hemisphere. The algorithm for such control is described and recommendations for its practical application are provided.The use of the DoLP parameter is indicated as an opportunity only for qualitative evaluation of the data of ground-based polarimetric measurements. Examples of visualization of the spatial distribution of sky polarization parameters in the model environment for a selected position, date, and time of observation are presented.

Keywords: Earth’s atmosphere, light scattering, linear polarization parameters, polarimeter, reliability of measurements data
References: 

1. Avramchuk V. V. (1965). Multicolor polarimetry of the light of the twilight and daytime sky at the zenith. Vopr. Astrofiz. (Naukova Dumka), 112-120 [in Russian].

2. Cheng Z., Mei T., Liang H. (2013). Positioning algorithm based on skylight polarization navigation. IFAC Proc. Vol., 46 (10). 97-101.
https://doi.org/10.3182/20130626-3-AU-2035.00040

3. Di Noia A., Hasekamp O. P., van Harten G., Rietjens J. H. H., Smit J. M., Snik F., Henzing J. S., de Boer J., Keller C. U., Volten H. (2015). Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations, Atmos. Meas. Tech. 8. 281-299.
https://doi.org/10.5194/amt-8-281-2015

4. Dubovik O., Li Z., Mishchenko M., Tanr D., Karol Y., Bojkov B., Cairns B., Diner D. , Espinosa W., Goloub P., Gu X., Hasekamp O., Hong J., Hou W., Knobelspiesse K., Landgraf J., Li L., Litvinov P., Liu Y., Lopatin A., Marbach T., Maring H., Martins V., Meijer Y., Milinevsky G., Mukai S., Parol F., Qiao Y., Remer L., Rietjens J., Sano I., Stammes P., Stamnes S., Sun X., Tabary P., Travis L., Waquet F., Xu F., Yan C., Yin D. (2019). Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. Radiat. Transf. 224. 474-511.
https://doi.org/10.1016/j.jqsrt.2018.11.024

5. Dupeyroux J., Viollet S., Serres J. R. (2019). Polarized skylight-based heading measurements: a bio-inspired approach. J. R. Soc. Interface, 16(150), 20180878.
https://doi.org/10.1098/rsif.2018.0878

6. Kong F., Guo Y., Zang J., Fan X., Guo X. (2023). Review on bio-inspired polarized skylight navigation. Chinese J. Aeronautics, 36(9), 14-37.
https://doi.org/10.1016/j.cja.2023.05.024

7. Li Q., Dong L., Hu Y., Hao Q., Lv J., Cao J., Cheng Y. (2023). Skylight polarization pattern simulator based on a virtual-real-fusion framework for urban bionic polarization navigation. Sensors, 23(15), 6906.
https://doi.org/10.3390/s23156906

8. Ma T., Hu X., Zhang L., Lian J., He X., Wang Y., Xian Z. (2015). An evaluation of skylight polarization patterns for navigation. Sensors, 15(3), 5895-5913.
https://doi.org/10.3390/s150305895

9. Martinov A. O., Katkouski L. V., Stanchick V. V., Beliaev B. I. (2018). Investigation of the atmosphere with a scanning solar spectropolarimeter. J. Belarus. State Univ. Phys. 3, 20-30 [in Russian].

10. Ovsak O., Vashchenko V., Vid'machenko A., Loza Y., Patlashenko Z., Ovsak B. (2021). Recovery of parameters for the multimodal aerosol component in the atmosphere from spectral polarimetric measurements. Ukrainian J. Phys. 66(6), 466-477.
https://doi.org/10.15407/ujpe66.6.466

11. Pomozi I., Horvth G., Wehner R. (2001). How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J. Exp. Biol., 204, 2933-2942.
https://doi.org/10.1242/jeb.204.17.2933

12. van Harten G., de Boer J., Rietjens J. H. H., Di Noia A., Snik F., Volten H., Smit J. M., Hasekamp O. P., Henzing J. S., Keller C. U. (2014). Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument. Atmos. Meas. Tech., 7, 4341-4351.
https://doi.org/10.5194/amt-7-4341-2014

13. Young A. T. (1982). Rayleigh Scattering. Phys. Today, 32(82). 7.
https://doi.org/10.1063/1.2890003

14. Zhao H., Xu W., Zhang Y., Li X., Zhang H., Xuan J., Jia B. (2018). Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight. Opt. Express, 26(22), 28589-28603.
https://doi.org/10.1364/OE.26.028589