Moderate magnetic storms on April 28 — May 2, 2023
1Chernogor, LF, Holub, MY 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(6):19-44 |
https://doi.org/10.15407/kfnt2024.06.019 |
Language: Ukrainian |
Abstract: Magnetic storm, ionospheric storm, atmospheric storm and electrical storm are the components of a geospace storm resulting from a solar storm. In the literature, the main attention is paid to the analysis of severe and extreme geospace storms. It is these storms that have the greatest impact on the Earth — atmosphere — ionosphere — magnetosphere system. They are most dangerous for space-based and ground-based technological systems. Such storms have a significant impact on human well-being and health. Minor and moderate storms are much less studied than severe and extreme ones. There are good reasons to believe that such storms can have some impact on the systems and people. It is important that the frequency of occurrence of moderate storms is much greater than the frequency of occurrence of severe storms. All this determined the relevance of this paper, which consists in the study of magnetic disturbances that arise during moderate geospace storms, which receive undeservedly little attention. The purpose of this paper is to analyze on a global scale the temporal variations of geomagnetic field components during moderate magnetic storms on April 28—29 and May 1—2, 2023.The latitudinal dependence of the geomagnetic field components temporal variations during two moderate magnetic storms in April—May 2023 and on reference days was analyzed on a global scale using the data of the global network of INTERMAGNET stations. The limits of fluctuations in the level of the geomagnetic field under quiet conditions and during moderate storms were estimated. The range of variations in the geomagnetic field level under quiet conditions decreased from 200…260 to 30…50 nT with decreasing geographic latitude. During the storms, these limits increased 1.3…2.1 times. The variations in the level of components at stations equidistant from the equator were close. This is true for both the western and eastern hemispheres. The fluctuations of the geomagnetic field level at the stations operating approximately at the same latitude, but in different hemispheres, were also close. |
Keywords: latitudinal dependence, level fluctuation, magnetic disturbance, moderate magnetic storm, range of variations |
1. Abe O. E., Fakomiti M. O., Igboama W. N., Akinola O. O., Ogunmodimu O., Migoya-OruJ Y. O. (2023). Statistical analysis of the occurrence rate of geomagnetic storms during solar cycles 20-24. Advances in Space Res., 71(5), 2240-2251.
https://doi.org/10.1016/j.asr.2022.10.033
2. Al Shidi Q., Pulkkinen T., Toth G., Brenner A., Zou S., Gjerloev J. (2022). A large simulation set of geomagnetic storms - Can simulations predict ground magnetometer station, observations of magnetic field perturbations? Space Weather, 20, id: e2022SW003049.
https://doi.org/10.1029/2022SW003049
3. Benestad R. E. (2006). Solar activity and Earth's climate. Chichester, UK: Springer-Praxis, Springer.
https://doi.org/10.1007/3-540-30621-8
4. Bothmer V., Daglis I. (2006). Space Weather: Physics and Effects. New York: Springer-Verlag.
https://doi.org/10.1007/978-3-540-34578-7
5. Buonsanto M. (1999). Ionospheric storms - A review. Space Sci. Revs., 88(3-4), 563-601.
https://doi.org/10.1023/A:1005107532631
6. Carlowicz M. J., Lopez R. E. (2002). Storms from the Sun. Washington, DC: Joseph Henry Press.
https://doi.org/10.17226/10249
7. Chernogor L. F. (2011). The Earth-atmosphere-geospace system: main properties and processes. Int. J. Remote Sens., 32, 3199-3218.
https://doi.org/10.1080/01431161.2010.541510
8. Chernogor L. F. (2021). Physics of geospace storms. Space Science and Technology, 27(1), 3-77.
https://doi.org/10.15407/knit2021.01.003
9. Chernogor L. F. (2021). Statistical characteristics of geomagnetic storms in the 24th cycle of solar activity. Kinematics and Phys. Celestial Bodies, 37(4), 193-199.
https://doi.org/10.3103/S0884591321040048
10. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms. Kharkiv:
V. N. Karazin Kharkiv National University Publ.
11. Chernogor L. F., Garmash K. P., Guo Q., Zheng Y. (2021). Effects of the strong ionospheric storm of August 26, 2018: Results of multipath radiophysical monitoring. Geomagnetism and Aeronomy, 61(1), 73-91.
https://doi.org/10.1134/S001679322006002X
12. Chernogor L. F., Grigorenko Ye. I., Lysenko V. N., Taran V. I. (2007).Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations. Int. J. Geomagn. Aeron., 7(GI3001).
https://doi.org/10.1029/2005GI000125
13. Chernogor L. F., Rozumenko V. T. (2008). Earth-Atmosphere-Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron., 13, 120-137.
14. Chernogor L. F., Shevelev M. B. (2020). Latitudinal dependence of quasi-periodic variations in the geomagnetic field during the greatest geospace storm of September 7-9, 2017. Space Sci. and Technol., 26(2), 72-83.
https://doi.org/10.15407/knit2020.02.072
15. Daglis I. A. (2001). Space Storms and Space Weather Hazards. New York: Springer Dordrecht. https://www.springer.com/gp/book/9781402000300.
https://doi.org/10.1007/978-94-010-0983-6
16. Danilov A. D., Latovika J. (2001). Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomag. Aeron., 2, 209-224.
17. Danilov A. D., Morozova L. D. (1985). Ionospheric storms in the F2 region. Morphology and physics (review). Geomag. Aeron., 25, 705-721.
18. De Abreu A. J., Correia E., De Jesus R., Venkatesh K., Macho E. P., Roberto M., (2023). Statistical analysis on the ionospheric response over South American mid- and near high-latitudes during 70 intense geomagnetic storms occurred in the period of two decades. J. Atmos. and Solar-Terr. Phys., 245, id: 106060.
https://doi.org/10.1016/j.jastp.2023.106060
19. Fagundes P. R., Tsali-Brown V. Y., Pillat V. G., Arcanjo M. O., Venkatesh K., Habarulema J. B. (2023). Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes. Advances in Space Res. 71(1), 46-66.
https://doi.org/10.1016/j.asr.2022.07.040
20. Freeman J. W. (2001). Storms in Space. Cambridge: Cambridge University Press.
https://doi.org/10.1046/j.1365-246X.2002.01771.x
21. Fuller-Rowell T. J., Codrescu M. V., Roble R. G., Richmond A. D. (1997). How does the thermosphere and ionosphere react to a geomagnetic storm? Magnetic storms. Eds Tsurutani B. T. et al. Geoph. Monog. Ser., 98, 203-226.
https://doi.org/10.1029/GM098p0203
22. Gonzalez W. D., Jozelyn J. A., Kamide Y., Kroehl H. W. (1994). What is a geomagnetic storm? J. Geophys. Res., 99, 5771-5792.
https://doi.org/10.1029/93JA02867
23. Grigorenko E. I., Lysenko V. N., Pazyura S. A., Taran V. I., Chernogor L. F. (2007). Ionospheric disturbances during the severe magnetic storm of November 7-10, 2004. Geomagn. Aeron., 47, 720-738.
https://doi.org/10.1134/S0016793207060059
24. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2003). Radio studies of processes in the ionosphere associated with the strongest September 25, 1998 geomagnetic storm. Uspekhi sovremennoi radioelektroniki, 9, 57-94 (in Russian).
25. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2005). Specific features of the ionospheric storm of March 20-23, 2003. Geomagn. Aeron., 45(6), 745-757.
26. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 1. Space Science and Technology, 13(5), 58-76.
https://doi.org/10.15407/knit2007.05.058
27. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe, 2. Space Science and Technology, 13(5), 77-96.
https://doi.org/10.15407/knit2007.05.077
28. Grigorenko E. I., Pazyura S. A., Taran V. I., Chernogor L. F., Chernyaev S. V. (2005b). Dynamic processes in the ionosphere during the severe magnetic storm of May 30-31, 2003. Geomagn. Aeron., 45(6), 758-777.
29. Hsu C.-T., Pedatella N. M. (2023). Effects of forcing uncertainties on the thermospheric and ionospheric states during geomagnetic storm and quiet periods. Space Weather, 21, id: e2022SW003216.
https://doi.org/10.1029/2022SW003216
30. Kamide Y., Maltsev Y. P. (2007). Geomagnetic Storms. In: Kamide Y., Chian A. Handbook of the Solar-Terrestrial Environment. Berlin, Heidelberg: Springer- Verlag, 355-374.
https://doi.org/10.1007/978-3-540-46315-3_14
31. Katsko S. V., Emelyanov L. Ya., Chernogor L. F. (2021). Features of the ionospheric storm on December 21-24, 2016. Kinematics and Phys. Celestial Bodies, 37(2), 85-95.
https://doi.org/10.3103/S0884591321020045
32. Katsko S. V., Emelyanov L. Ya., Domnin I. F., Chernogor L. F. (2020). Ionosphere response to geomagnetic storms on 7-8 September 2017 over Kharkiv (Ukraine). URSI GASS, Rome, Italy, 29 August - 5 September 2020.
https://doi.org/10.23919/URSIGASS49373.2020.9232440
33. Koskinen H. E. J. (2011). Physics of space storms. From Solar Surface to the Earth. Berlin, Heidelberg: Springer-Verlag.
https://doi.org/10.1007/978-3-642-00319-6
34. Laskar F. I., Sutton E. K., Lin D., Greer K. R., Aryal S., Cai X. (2023). Thermospheric temperature and density variability during 3-4 February 2022 minor geomagnetic storm. Space Weather, 21, id: e2022SW003349. DOI:10.1029/2022SW003349.
https://doi.org/10.1029/2022SW003349
35. Latovika J. (1996). Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere. J. Atmos. Terr. Phys., 58, 831-843.
https://doi.org/10.1016/0021-9169(95)00106-9
36. Lilensten J., Bornarel J. (2006). Space Weather, Environment and Societies. Berlin/ New York: Springer. https://www.springer.com/gp/book/9781402043314.
37. Lin D., Wang W., Merkin V. G., Huang C., Oppenheim M., Sorathia K. (2022). Origin of dawnside subauroral polarization streams during major geomagnetic storms. AGU Advances, 3, id:e2022AV000708.
https://doi.org/10.1029/2022AV000708
38. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2021). Dynamic processes in the magnetic field and in the ionosphere during the 30 August-2 September 2019 geospace storm: influence on high frequency radio wave characteristics. Ann. Geophys., 39, 657-685.
https://doi.org/10.5194/angeo-39-657-2021
39. Luo Y., Chernogor L. F. (2022). Characteristic features of the magnetic and ionospheric storms on December 21-24, 2016. Kinematics and Phys. Celestial Bodies, 38(5), 262-278.
https://doi.org/10.3103/S0884591322050051
40. Luo Y., Chernogor L. F., Garmash K. P. (2022). Magneto-ionospheric effects of the geospace storm of March 21-23, 2017. Kinematics and Phys. Celestial Bodies, 38(4), 210-229.
https://doi.org/10.3103/S0884591322040055
41. Luo Y., Guo Q., Zheng Y., Garmash K. P., Chernogor L. F., Shulga S. N. (2021). Geospace storm effects on August 5-6, 2019 (in Ukrainian). Space Science and Technology, 27(2), 45-69.
https://doi.org/10.15407/knit2021.02.045
42. Moldwin M. (2008). An introduction to space weather. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511801365
43. Oikonomou C., Haralambous H., Paul A., Ray S., Alfonsi L., Cesaroni C., Sur D. (2022). Investigation of the negative ionospheric response of the 8 September 2017 geomagnetic storm over the European sector. Advances in Space Res., 70(4), 1104-1120.
https://doi.org/10.1016/j.asr.2022.05.035
44. Prlss G. W. (1995). Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics. Ed. H. Volland. Florida, USA: CRC Press, Boca Raton. Vol. 2, 195-248.
45. Prlss G. W.(1998). Magnetic storm associated perturbations of the upper atmosphere. Magnetic storms. Eds B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, J. K. Arballo Geophys. Monog. Ser., 98, 249-290.
https://doi.org/10.1029/GM098p0227
46. Qian L., Wang W., Burns A. G., Chamberlin P. C., Coster A., Zhang S.-R., Solomon S. C. (2019). Solar flare and geomagnetic storm effects on the thermosphere and ionosphere during 6-11 September 2017. J. Geophys. Res.: Space Phys., 124, 2298-2311.
https://doi.org/10.1029/2018JA026175
47. Song P., Singer H., Siscoe G. (2001). Space Weather (Geophysical Monograph). Washington, DC: American Geophysical Union.
https://doi.org/10.1002/9781118668351
48. Tariq M. A., Yuyan Y., Shah M., Shah M. A., Iqbal T., Liu L. (2022). Ionospheric-Thermospheric responses to the May and September 2017 geomagnetic storms over Asian regions. Advances in Space Res., 70(11), 3731-3744.
https://doi.org/10.1016/j.asr.2022.08.050