27-day zonal wind fluctuations in the troposphere and lower stratosphere under solar activity influence
Zakharov, IG, 1Chernogor, LF 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(1):24-44 |
https://doi.org/10.15407/kfnt2025.01.024 |
Language: Ukrainian |
Abstract: Longitudinal, latitudinal and altitudinal features of the zonal wind in the Northern Hemisphere under the influence of 27-day variations of solar activity (SA) were studied. The aim of research is at increasing accuracy of weather forecasts and deepening our knowledge about dynamic processes of the interaction of atmospheric layers. Zonal wind data by 5° latitude from the website https://psn.noaa.gov at the longitudes of Europe and North America from 15 altitude levels (from 1000 to 10 hPa), and SA data from the website https://www-app3.gfz-potsdam.de were used. Twenty high-amplitude 27-day SA cycles during decline phase of the 23rd 11-year solar cycle from 2002 to 2004 were studied. The average 27-day wind changes for each latitude and altitude are calculated by the superposed epoch analysis separately for the winter and summer seasons. For the first time, 27-day latitudinal and altitudinal variations of zonal wind with an amplitude of ~ 8 m/s, capable of influencing the weather in the extratropical atmosphere, were established. Despite the significant difference in the background wind field in winter and summer, the response of the wind field to SA influence is similar for both seasons. The maximum wind changes occur in the southern part of the polar atmospheric cell and the northern part of the Ferrell cell (50-70° N) and gradually decrease in magnitude to the south and north. Wind changes are many times smaller in the tropical troposphere. At the boundaries of the global circulation cells, the direction of disturbed wind changes to the opposite. Changes in the position of jet streams by more than 1° in latitude and changes in the size of atmospheric circulation cells are also observed. In terms of height, the largest changes in the wind at all latitudes occur in the upper troposphere. There is a close relationship between the magnitude of the perturbed wind and changes in the tropopause height. The impact is realized through two-way dynamic stratospheric-tropospheric interaction, primarily in the area of the polar night jet and polar front jet stream. The presence of significant wind changes for the summer season indicates an important role not only of planetary-scale Rossby waves, but also of shorter-wavelength waves. At the same time, their upward propagation can be ensured by nonlinear interaction between them. |
Keywords: 27-day cycle, solar activity, stratospheric-tropospheric interaction, zonal wind |
1. Baldwin, M. P., Ayarzaghena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., et al. (2021). Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708.
https://doi.org/10.1029/2020RG000708
2. Baldwin, M. P., Dunkerton, T. J. (1999). Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104. 30937-30946.
https://doi.org/10.1029/1999JD900445
3. Baldwin, M. P., Dunkerton, T. J. (2001). The solar cycle and stratosphere-troposphere dynamical coupling. Science., 294, 581-584.
https://doi.org/10.1126/science.1063315
4. Bal, S., Schimanke, S., Spangehl, T., Cubasch, U. (2018). Enhanced residual mean circulation during the evolution of split type sudden stratospheric warming in observations and model simulations. J. Earth Syst. Sci., 127, 5.
https://doi.org/10.1007/s12040-018-0972-x
5. Boljka, L., Birner, T. (2020). Tropopause-level planetary wave source and its role in two-way troposphere-stratosphere coupling. Weather Clim. Dynam., 1, 555-575.
https://doi.org/10.5194/wcd-1-555-2020
6. Burns, G. B., Tinsley, B. A., French, W. J. R., Troshichev, O. A., Frank-Kamenetsky, A. V. (2008). Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic. J. Geophys. Res. Atmos., 113, D15.
https://doi.org/10.1029/2007JD009618
7. Charney, J. G., Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83-109.
https://doi.org/10.1029/JZ066i001p00083
8. Dikty, S., Weber, M., von Savigny, C., Sonkaew, T., Rozanov, A., Burrows, J. P. (2010). Modulations of the 27 day solar rotation signal in stratospheric ozone from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (2003-2008). J. Geophys. Res., 115, D00I15. DOI:10.1029/2009JD012379.
https://doi.org/10.1029/2009JD012379
9. Fioletov, V. E. (2009). Estimating the 27-day and 11-year solar cycle variations in tropical upper stratospheric ozone. J. Geophys. Res., 114, D02302.
https://doi.org/10.1029/2008JD010499
10. Frame, T. H. A., Gray, L. J. (2010). The 11-year solar cycle in ERA-40 data: An update to 2008. J. Clim, 23, 2213-2222.
https://doi.org/10.1175/2009JCLI3150.1
11. Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., White, W. (2010). Solar influences on climate. Rev. Geophys., 48, RG4001. DOI: 10.1029/2009RG000282.
https://doi.org/10.1029/2009RG000282
12. Gray, L., Phipps, S., Dunkerton, T., Baldwin, M., Drysdale, E., Allen, M. (2001). A data study of the influence of the equatorial upper stratosphere on Northern- Hemisphere stratospheric sudden warming. Quart. J. Royal Meteorol. Soc., 127, 576, 1985-2003.
https://doi.org/10.1002/qj.49712757607
13. Gruzdev, A. N., Schmidt, H., Brasseur, G. P. (2009). The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model. Atmos. Chem. Phys., 8, 1113-1158.
https://doi.org/10.5194/acp-9-595-2009
14. Haigh, J. D., Blackburn, M. (2006). Solar influences on dynamical coupling between the stratosphere and troposphere. Space Science Reviews, 125, 1-4, 331-344.
https://doi.org/10.1007/978-0-387-48341-2_26
15. Hartley, D. E., Villarin, J. T., Black, R. X., Davis, C. A. (1998). A new perspective on the dynamical link between the stratosphere and troposphere. Nature, 391, 471-474.
https://doi.org/10.1038/35112
16. Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., Shine, K. P. (1991). On the "downward control" of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678.
https://doi.org/10.1175/1520-0469(1991)0482.0.CO;2
17. Hitchcock, P., Simpson, I. R. (2014). The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 10, 3856-3876.
https://doi.org/10.1175/JAS-D-14-0012.1
18. Holton, J. R. (1976). A semi-spectral numerical model for wave-mean flow interactions in the stratosphere: Application to sudden stratospheric warmings. J. Atmos. Sci., 33, 8, 1639-1649.
https://doi.org/10.1175/1520-0469(1976)0332.0.CO;2
19. Hood, L. L. (2003). Thermal response of the tropical tropopause region to solar ultraviolet variations. Geophys. Res. Lett., 30, 23.
https://doi.org/10.1029/2003GL018364
20. Hood, L. L., Zhou S. (1998). Stratospheric effects of 27-day solar ultraviolet variations: An analysis of UARS MLS ozone and temperature data. J. Geophys. Res., 103, D3, 3629-3638.
https://doi.org/10.1029/97JD02849
21. Huang, K. M., Liu, A. Z., Zhang, S. D., Yi, F., Huang, C. M., Gan, Q., Gong, Y., Zhang, Y. H., Wang, R. (2015). Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N. Ann. Geophys., 33, 1321-1330.
https://doi.org/10.5194/angeo-33-1321-2015
22. Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., Gray, L. J. (2015). Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geosci., 8, 6, 433-440.
https://doi.org/10.1038/ngeo2424
23. Kodera, K., Kuroda, Y. (2002). Dynamical response to the solar cycle. J. Geophys. Res., 107, D24, 4749.
https://doi.org/10.1029/2002JD002224
24. Kubin, A., Langematz, U., Brhhl, C. (2011). Chemistry climate model simulations of the effect of the 27 day solar rotational cycle on ozone. J. Geophys. Res., 116, D15301.
https://doi.org/10.1029/2011JD015665
25. Labitzke, K., Kunze, M., Bronnimann, S. (2006). Sunspots, the QBO and the stratosphere in the north polar region-20 years later. Meteorol. Z., 15, 355-363.
https://doi.org/10.1127/0941-2948/2006/0136
26. Matsumo, T. (1971). A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 8, 1479-1494.
https://doi.org/10.1175/1520-0469(1971)0282.0.CO;2
27. Matthes, K., Kuroda, Y., Kodera, K., Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111, D06108.
https://doi.org/10.1029/2005JD006283
28. Matthes, K., Langematz, U., Gray, L. J., Kodera, K., Labitzke, K. (2004). Improved 11-year solar signal in the Freie Universitt Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res., 109, D06101.
https://doi.org/10.1029/2003JD004012
29. Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., van Loon, H. (2009). Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325, 1114-1118.
https://doi.org/10.1126/science.1172872
30. Ruzmaikin, A., Santee, M. L., Schwartz, M. J., Froidevaux, L., Pickett, H. (2007). The 27-day variations in stratospheric ozone and temperature: New MLS data. Geophys. Res. Lett., 34, L02819.
https://doi.org/10.1029/2006GL028419
31. Shepherd, T. G. (2002). Issues in stratosphere - troposphere coupling. J. Meteorol. Soc. Japan, 80, 4B, 769-792.
https://doi.org/10.2151/jmsj.80.769
32. Smith, K. L., Scott, R. K. (2016). The role of planetary waves in the tropospheric jet response to stratospheric cooling. Geophys. Res. Lett., 43, 2904-2911.
https://doi.org/10.1002/2016GL067849
33. Stone, K. A., Solomon, S., Kinnison, D. E., Baggett, C. F., Barnes, E. A. (2019). Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geoph. Res. Atmos., 124, 12.
https://doi.org/10.1029/2018JD029626
34. Takahashi, Y., Okazaki, Y., Sato, M., Miyahara, H. Sakanoi, K., Hong, P. K., Hoshino, N. (2010). 27-day variation in cloud amount in the Western pacific warm pool region and relationship to the solar cycle. Atmos. Chem. Phys., 10, 1577-1584.
https://doi.org/10.5194/acp-10-1577-2010
35. Williams, G. P. (2006). Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 7, 1954-1961.
https://doi.org/10.1175/JAS3762.1
36. Yang, S.-S., Pan, C.-J., Das, U. (2021). Investigating the spatio-temporal distribution of gravity wave potential energy over the equatorial region using the ERA5 reanalysis data. Atmosphere, 12, 311.
https://doi.org/10.3390/atmos12030311
37. Zakharov, I. G., Chernogor, L. F. (2024). Response of the troposphere to 27-day solar activity cycles. Astronomy and Space Physics in the Kyiv University. Book of Abstracts. International Conference in part of the Science Day in Ukraine. May 28 - May 31, 2024. Kyiv, Ukraine. - Pp. 98-99.
38. Zhou, T., Geller, M. A., Lin, W. (2012). An observational study on the latitudes where wave forcing drives Brewer - Dobson upwelling. J. Atmos. Sci., 69, 6, 1916-1935.
https://doi.org/10.1175/JAS-D-11-0197.1