Electromagnetic coupling of geospheres. 2. Disturbances in the magnetosphere

Heading: 
1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(2):3-30
https://doi.org/10.15407/kfnt2025.02.003
Language: Ukrainian
Abstract: 

The paper is devoted to the analysis of the electromagnetic mechanism of subsystems interaction in the Earth — atmosphere — ionosphere — magnetosphere system. The basis is a system of equations for the volume density of electromagnetic energy and the total electron content of high-energy electrons in a magnetic flux tube, which describes the wave — particle resonant coupling at the cyclotron frequency. The purpose of this paper is to obtain analytical solutions to a system of equations describing the interaction of powerful electromagnetic radiation with magnetospheric high-energy electrons and numerical modeling of the main parameters of this interaction. Solutions to stationary and nonstationary problems have been obtained. Aperiodic and quasiperiodic disturbance regimes are revealed. The values of the stationary relative disturbance of the total electron content depending on the parameters of particle sources and electromagnetic radiation are calculated. The values of a number of the magnetospheric and ionospheric parameters are calculated depending on the parameters of the sources of electrons and electromagnetic radiation. It has been shown that the radiation of a single lightning can lead to significant electron flux densities (~105… 1011 m-2s-1). In this case, the electron density in the ionosphere can increase from tens of percent to hundreds of times. The disturbances of the geomagnetic and ionospheric electric fields caused by ionization bursts in the ionosphere have been calculated. The amplitude of geomagnetic field disturbances varied from fractions to hundreds of nanoteslas, while the electric field disturbances ranged from 10 µV to 100 mV. Secondary effects in the EAIM system caused by the electromagnetic disturbance mechanism are briefly considered.

Keywords: disturbance of the electric field, disturbance of the geomagnetic field, electromagnetic radiation, lightning, magnetic flux tube, magnetosphere, precipitation of high-energy electrons, total electron content, trigger effect, volume density of electromagnetic energy
References: 

1. Bazelyan E. M., Raizer Y. P. (2000). Lightning physics and lightning protection. CRC Press, Boca Raton.
https://doi.org/10.1201/9780367801533

2. Imyanitov I. M., Chubarina E. V., Schwartz Ya. M. (1971). Electricity of Clouds. Leningrad: Gidrometeoizdat.

3. Lizunov G. V., Skorokhod Т. V., Korepanov V. Ye. (2020). Atmospheric gravity waves among other physical mechanisms of seismic-ionospheric coupling. Space Sci. Technol., 26(3), 55-80.
https://doi.org/10.15407/knit2020.03.055

4. Chernogor L. F. (2006). The tropical cyclone as an element of the Earth - atmosphere - ionosphere - magnetosphere system. Space Sci. Technol. 12(2-3), 16-36. [in Russian].
https://doi.org/10.15407/knit2006.02.016

5. Chernogor L. F. (2009). Radiophysical and geomagnetic effects of rocket engine burn: monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

6. Chernogor L. F. (2012). Physics and ecology of disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

7. Chernogor, L. F., 2013. Physical effects of solar eclipses in atmosphere and geospace: Monograph. V. N. Karazin Kharkiv National University Publ., Kharkiv. [in Russian].

8. Chernogor L. F. (2014). Physics of powerful radio emission in geospace: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

9. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms: Monograph. Kharkiv: V. N. Karazin Kharkiv National University, Institute of Ionosphere NAS and MES of Ukraine. [in Russian].

10. Chernogor L. F. (2020). Geomagnetic variations caused by the Lipetsk Meteoroid's passage and explosion: Measurement results. Kinematics and Phys. Celestial Bodies, 36(2), 79-93.
https://doi.org/10.3103/S0884591320020038

11. Chernogor L. F. (2021). Physics of geospace storms. Kosm. nauka tehnol., 27(1), 3-77. [in Ukrainian]. DOI: 10.15407/knit2021.01.003
https://doi.org/10.15407/knit2021.01.003

12. Chernogor L. F. (2022). Kamchatka meteoroid effects in the geomagnetic field. Kinematics and Phys. Celestial Bodies, 38(1), 25-48.
https://doi.org/10.3103/S0884591322010032

13. Chernogor L. F. (2022). Geomagnetic effect of the solar eclipse of June 10, 2021. Kinematics and Phys. Celestial Bodies, 38(1), 11-24.
https://doi.org/10.3103/S0884591322010020

14. Chernogor L. F. Role of non-stationary high-energy processes and atmospheric turbulence in electrical interaction of geospheres. Kinematics and Phys. Celestial Bodies. 2024. 40, № 4. P. 22-44. [in Ukrainian].
https://doi.org/10.15407/kfnt2024.04.022

15. Blake J. B., Inan U. S., Walt M., Bell T. F., Bortnik J., Chenette D. L., Christian H. J. (2001). Lightning-induced energetic electron flux enhancements in the drift loss cone. J. Geophys. Res.: Space Phys., 106(A12), 29733-29744.
https://doi.org/10.1029/2001JA000067

16. Burgess W. C., Inan U. S. Simultaneous disturbance of conjugate ionospheric regions in association with individual lightning flashes. Geophys. Res. Lett. 1990. 17, № 3. 259-262.
https://doi.org/10.1029/GL017i003p00259

17. Chernogor L. F. (2014). Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy, 54(5), 613-624. DOI:
https://doi.org/10.1134/S001679321405003X

18. Chernogor L. F. (2019). Geomagnetic disturbances accompanying the great Japanese earthquake of March 11, 2011. Geomagnetism and Aeronomy, 59(1), 62-75.
https://doi.org/10.1134/S0016793219010043

19. Chernogor L. F. (2020). Effects of the Lipetsk meteoroid in the geomagnetic field. Geomagnetism and Aeronomy, 60(3), 355-372.
https://doi.org/10.1134/S0016793220030032

20. Chernogor L. F. (2023). A tropical cyclone or typhoon as an element of the Earth - atmosphere - ionosphere - magnetosphere system: Theory, simulations, and observations. Remote Sensing, 15, 4919. DOI: 10.3390/rs15204919
https://doi.org/10.3390/rs15204919

21. Chernogor L. F., Blaunstein N. (2013). Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.

22. Gurevich A. V., Zybin K. P. (2001). Runaway breakdown and electric discharges in thunderstorms. Phys. Usp., 44(11), 1119-1140.
https://doi.org/10.1070/PU2001v044n11ABEH000939

23. Imhof W. L., Reagan J. B., Voss H. D., Gaines E. E., Datlowe D. W., Mobilia J., Helliwell R. A., Inan U. S., Katsufrakis J., Joiner R. G. (1983). Direct observation of radiation belt electrons precipitated by the controlled injection of VLF signals from a ground-based transmitter. Geophys. Res. Lett., 10(4), 361-364.
https://doi.org/10.1029/GL010i004p00361

24. Imhof W. L., Reagan J. B., Voss H. D., Gaines E. E., Datlowe D. W., Mobilia J., Helliwell R. A., Inan U. S., Katsufrakis J., Joiner R. G. (1983). The modulated precipitation of radiation belt electrons by controlled signals from VLF transmitters. Geophys. Res. Lett., 10(8), 615-618.
https://doi.org/10.1029/GL010i008p00615

25. Inan U. S. VLF heating of the lower ionosphere. Geophys. Res. Lett. 1990. 17, № 6. Р. 729-732.
https://doi.org/10.1029/GL017i006p00729

26. Inan U. S., Bell T. F., Rodriguez J. V. (1991). Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett., 18(4), 705-708.
https://doi.org/10.1029/91GL00364

27. Inan U. S., Rodriguez J. V., Idone V. P. (1993). VLF signatures of lightning-induced heating and ionization of the nighttime D-region. Geophys. Res. Lett., 20(21), 2355-2358.
https://doi.org/10.1029/93GL02620

28. Iudin D. I., Davydenko S. S., Gotlib V. M., Dolgonosov M. S., Zelenyi L. M. (2018). Physics of lightning: new model approaches and prospects of the satellite observations. Phys. Usp., 61, 766-778.
https://doi.org/10.3367/UFNe.2017.04.038221

29. Lizunov G., Skorokhod T., Hayakawa M., Korepanov V. (2020). Formation of ionospheric precursors of earthquakes - probable mechanism and its substantiation. Open J. Earthq. Res., 9, 142-169.
https://doi.org/10.4236/ojer.2020.92009

30. Luo Y., Chernogor L. F. (2023). Resonance electromagnetic effect of the Kamchatka meteoroid. Kinematics and Phys. Celestial Bodies, 39(1), 1-9.
https://doi.org/10.3103/S0884591323010051

31. Peter W. B., Inan U. S. (2005). Electron precipitation events driven by lightning in hurricanes. J. Geophys. Res.: Space Phys., 110(A5), id:A05305.
https://doi.org/10.1029/2004JA010899

32. Rodriguez J. V., Inan U. S., Bell T. F. (1992). D region disturbances caused by electromagnetic pulses from lightning. Geophys. Res. Lett., 19(20), 2067-2070.
https://doi.org/10.1029/92GL02379

33. Taranenko Y. N., Inan U. S., Bell T. F. (1992). Optical signatures of lightning-Induced heating of the D region. Geophys. Res. Lett., 19(18), 1815-1818.
https://doi.org/10.1029/92GL02106

34. Taranenko Y. N., Inan U. S., Bell T. F. (1993). Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization. Geo¬phys. Res. Lett., 20(15), 1539-1542.
https://doi.org/10.1029/93GL01696

35. Taranenko Y. N., Inan U. S., Bell T. F. (1993). The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions. Geophys. Res. Lett., 20(23), 2675-2678.
https://doi.org/10.1029/93GL02838

36. Uman M. A. (1988). Natural and artificially lightning and test standards. Proc. IEEE, 76(12), 5-26.
https://doi.org/10.1109/5.16349

37. Uman M. A. (2011). Lightning. Dover Publications.

38. Voss H. D., Imhof W. L., Walt M., Mobilia J., Gaines E. E., Reagan J. B., Inan U. S., Helliwell R. A., Carpenter D. L., Katsufrakis J. P., et al. (1984). Lightning-induced electron precipitation. Nature, 312, 740-742.
https://doi.org/10.1038/312740a0

39. Watt A. D. (1967). International series of monographs in electromagnetic waves. New York: Pergamon.