On the uniqueness of Saturn’s equinox in 2010 based on observations in methane absorption bands in 1964—2024
| 1Vidmachenko, AP 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
| Kinemat. fiz. nebesnyh tel (Online) 2025, 41(3):20-31 |
| https://doi.org/10.15407/kfnt2025.03.020 |
| Language: Ukrainian |
Abstract: Due to the inclination of Saturn’s equator to the plane of its orbit at an angle of close to 27° and due to the presence of rings that block the arrival of solar radiation to the winter hemisphere for a long time, the planet’s atmosphere undergoes significant seasonal changes. Once every 14.7 Earth years, the planet’s rings are visible edge-on to an Earth-based observer, and then the insolation conditions for both hemispheres become the same. The most favorable opportunities for such observations were in 1966, 1980, 1995, 2009—2010, and 2024. We compared the available observational data and the results of our calculations within the framework of a two-layer model of Saturn’s atmosphere for such equinoxes. They showed that the latitudinal belts of the planet, which have just emerged from the shadow of the rings, usually differ significantly from other belts in their physical characteristics under practically the same physical and orbital conditions of the planet. From the analysis of the parameter values calculated for different latitudes, the conclusion was confirmed that for the hemisphere, which until the time of receiving observational data was shielded by rings (until 1966, 1995 and 2024 — in the Southern Hemisphere, and until 1980 and 2009 — in the Northern Hemisphere), the cloud layer is more sparse and its upper boundary is at a higher altitude than in the hemisphere that «survived» the «summer» season before. And those equatorial regions of Saturn, which for a long time were closed by rings, experiencing a deficit of solar radiation inflow into the atmosphere, differ from other latitude zones in an increased amount of some strongly absorbing color impurity. However, 2009 and, partly, 1995 do not correspond to this assumption. The northern equatorial region, which had just emerged from the shadow of the rings in 2009, did not show a significant decrease in methane absorption. That is, neither high-altitude haze nor a rarefied layer of clouds formed in this part of the atmosphere. Since, as a rule, these new formations are of a photochemical nature, it can be assumed that for some reason there was not enough energy in the atmosphere to form a photochemical aerosol layer, which usually formed in the lower stratosphere (upper troposphere) of Saturn, and which reduced methane absorption and increased albedo. The reason for this could be that the equinoxes on Saturn in 1995—1996 and in 2009—2010 occurred at times close to the minimum of activity on the Sun, when the solar activity index R differed only slightly from the zero value. |
| Keywords: atmosphere, methane absorption, Saturn, seasonal variations, solar activity |
1. Callis L. B., Nealy J. E. (1978) Solar UV variability and its effect on stratospheric thermal structure and trace constituents. Geophysical Res. Let. 5, Apr. 249-252.
https://doi.org/10.1029/GL005i004p00249
2. Cess R. D., Cocran J. (1979) A Saturnian stratospheric seasonal climate model. Icarus. 38. 349-357.
https://doi.org/10.1016/0019-1035(79)90191-X
3. Cochran A. L., Cochran W. D. (1981) Longitudinal variability of methane and ammonia bands on Saturn. Icarus. 48, Dec. 488-495.
https://doi.org/10.1016/0019-1035(81)90059-2
4. Dlugach J. M., Morozhenko A. V., Vid'Machenko A. P., Yanovitskij E. G. (1983) Investigations of the optical properties of Saturn's atmosphere carried out at the main astronomical observatory of the Ukrainian Academy of Sciences. Icarus. 54(2). 319-336.
https://doi.org/10.1016/0019-1035(83)90201-4
5. Irvine W. M., Simon Th., Menzel D. H., et al. (1968) Multicolor photoelectric photometry of the brighter planets. III. Observations from Boyden observatory. Astron. J. 73(8). 807-823.
https://doi.org/10.1086/110702
6. Karkoshka E., Tomasko M. G. (1992) Saturn's upper troposphere 1986-1989. Icarus. 97(2). 161-181.
https://doi.org/10.1016/0019-1035(92)90125-Q
7. Karkoschka E., Tomasko M. (2005) Saturn's vertical and latitudinal cloud structure 1991-2004 from HST imaging in 30 filters. Icarus. 179(1). 195-221.
https://doi.org/10.1016/j.icarus.2005.05.016
8. Klimenko V. M., Morozhenko A. V., Vid'machenko A. P. (1980) Phase effect for the brightness coefficient of the central disk of Saturn and features of Jupiter's disk. Icarus. 42(3). 354-357.
https://doi.org/10.1016/0019-1035(80)90101-3
9. Kuznyetsova Yu., Matsiaka O., Shliakhetskaya Ya., Krushevska V., Vidmachenko A., Andreev M., Sergeev A. (2014) Spectral researches of Solar system giant planets using 2-m telescope at the Peak Terskol. Contributions Astron. Observ. Skalnatй Pleso. 43(3). 461.
10. Marin M. (1968) Photometric photographique de Saturne. J. Observ. 51(3). P. 179-191.
11. Morozhenko A., Vid'machenko A. (2004) Polarimetry and physics of Solar system bodies. Photopolarimetry in remote sensing. Edited by G. Videen, Ya. Yatskiv, M. Mishchenko. Book Series: NATO science series, Series II: Mathematics, physics and chemistry. Vol. 161. Kluwer Academic Publishers, Dordrecht/Boston/London. P. 369-384.
https://doi.org/10.1007/1-4020-2368-5_16
12. Ortiz J. L., Moreno F., Molina A. (1995) Saturn 1991-1993: Reflectivities and limb-darkening coefficients at methane bands and nearby continua-temporal changes. Icarus. 117(2). P. 328-344.
https://doi.org/10.1006/icar.1995.1159
13. Owen T. (1969) The spectra of Jupiter and Saturn in the photographic infrared. Icarus. 19(3). P. 355-364.
https://doi.org/10.1016/0019-1035(69)90090-6
14. Perez-Hoyos S., Sanchez-Lavega A., French R. G., Rojas J. F. (2005) Saturn's cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994-2003). Icarus. 176. P. 155-174.
https://doi.org/10.1016/j.icarus.2005.01.014
15. Steklov A. F., Vidmachenko A. P., Minyailo N. F. (1983) Seasonal variations in the atmosphere of Saturn. Soviet Astron. Let. 9(2). 135-136.
16. Teifel V. G. (1974) The atmosphere of Saturn. In: Exploration of the planetary system. Proceedings of the Symposium, Torun, Poland, September 5-8, 1973. (A75-21276 08-91) Dordrecht, D. Reidel Publishing Co. P. 415-440.
https://doi.org/10.1007/978-94-010-2206-4_39
17. Tejfel V. G. (1997) Molecular-absorption distribution over Saturn's Disk from the 1995 observations based on the zonal CCD spectrophotometry: Observational Results. Solar System Research. 31(3). 198-206.
18. Tejfel V. G., Karimov A. (2009) Latitudinal asymmetry of the ammonia absorption on Saturn. European Planetary Science Congress 2009, held 14-18 September in Potsdam, Germany. EPSC. 4. P. 34.
19. Tejfel V. G., Karimov A. M., Kharitonova G. A. (2010) Comparison of the Latitudinal Variations of the Methane Absorption. Astron. Tsirkulyar. 1573. P. 1-2.
20. Tejfel V. G., Vdovichenko V., Karimov A., et al. (2010) Saturn CCD-spectrophotometry in 2009 and 2010 - a comparison of near- and post-equinox latitudinal distribution of molecular absorption. European Planetary Science Congress 2010, held 20-24 September in Rome, Italy. EPSC. 5. Abstr. 322.
21. Temma T., Chanover N. J., Simon-Miller A. A., et al. (2005) Vertical structure modeling of Saturn's equatorial region using high spectral resolution imaging. Icarus. 175(2). 464-489.
https://doi.org/10.1016/j.icarus.2004.11.006
22. Vidmachenko A. P. (1981) Absolute electrophotometry of features of Saturn's disc. Physics of planetary atmospheres. P. 113-132.
23. Vidmachenko A. P. (1982) The electrophotomety of Saturn. I - The distribution of brightness over the equatorial regions in the spectral range of 0.3-0.6 micron. Astrometriia i Astrofizika. 47. 70-75.
24. Vidmachenko A. P. (1982) The Photometrical Features in Brightness Distribution Over Saturn's Equatorial Belt in Ultraviolet. Astron. Tsirkulyar. No. 1227. P. 1-3.
25. Vidmachenko A. P. (1984) Reflectivity of Saturn's south equatorial region from 1977 through 1981. Astron. Vestnik. 18, July-Sept. P. 191-198.
26. Vidmachenko A. P. (1984) Electrophotometry of Saturn. II - Spectral brightness distribution along the central meridian. Astrometriia i Astrofizika. 51. 56-62.
27. Vidmachenko A. P. (1984) The albedo of the southern equatorial region of Saturn in 1977-1981. Astron. Vestnik. 18(3). 191-198.
28. Vidmachenko A. P. (1985) Reflectivity of Saturn's south equatorial region from 1977 through 1981. Solar System Res. 18(3). 123-128.
29. Vidmachenko A. P. (1991) Giant planets - Theoretical and observational aspects. Astron. Vestnik. 25, May-June. 277-292.
30. Vidmachenko A. P. (1999) Seasonal variations in the optical characteristics of Saturn's atmosphere. Kinematics Phys. Celestial Bodies. 15(5). 320-331.
31. Vidmachenko A. P. (1999) Variations in reflective characteristics of Jupiter's atmosphere. Solar System Res. 33. P. 464.
32. Vidmachenko A. P. (2015) Seasonal changes in the reflection characteristics of Saturn in 4 moments of Saturnian equinox. 17 International scientific conference Astronomical School of Young Scientists, held May 20-22, 2015, Zhytomyr, Ukraine. The program and abstracts. P. 10-14.
33. Vidmachenko A. P. (2015) Influence of solar activity on seasonal variations of methane absorption in the atmosphere of Saturn. Kinematics Phys. Celestial Bodies. 31(3). 131-140.
https://doi.org/10.3103/S088459131503006X
34. Vidmachenko A. P. (2015) Seasons on Saturn. 1. Changes in reflecting characteristics of the atmosphere at 1964-2012. Astronomical School's Report. 11(1). 1-14.
https://doi.org/10.18372/2411-6602.11.1001
35. Vidmachenko A. P. (2015) Solar activity influence on seasonal changes in Saturn's atmosphere. Conference: 46th Lunar and Planetary Science Conference, held March 16-20, 2015. LPI Contribution No. 1832. 1052 At: The Woodlands, TexasVolume: 46.
36. Vidmachenko A. P. (2021) Features of the equinox of Saturn in 2010. Kinematics and Phys. Celestial Bodies. 37(1). 33-40.
https://doi.org/10.3103/S0884591321010062
37. Vidmachenko A. P., Dlugach Zh. M., Morozhenko A. V. (1984) Nature of the optical nonuniformity in Saturn's disk. Solar System Res. 17(4). 164-171.
38. Vidmachenko A. P., Steklov A. F., Minyajlo N. F. (1984) Seasonal activity on Jupiter. Soviet Astron. Let. 10(5). 289-290.
39. West R. A., Tomasko M. G., Smith B. A., et al. (1982) Spatially resolved methane band photometry of Saturn. I - Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus. 51, July. P. 51-64.
https://doi.org/10.1016/0019-1035(82)90029-X
