Observation of the occultation of the star TYC 1318-01031-1 by the asteroid (52) Europa on September 9, 2020
| 1Kleschonok, VV, Karbivsky, VL, Kashuba, VI, Angelsky, OV, 2Lashko, MV 1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
| Kinemat. fiz. nebesnyh tel (Online) 2025, 41(5):29-39 |
| https://doi.org/10.15407/kfnt2025.05.029 |
| Language: Ukrainian |
Abstract: The article presents the results of observations and data processing related to the occultation of the star TYC 1318-01031-1 by the asteroid (52) Europa, conducted from multiple observation sites. Data were collected by both professional astronomers and experienced amateur observers. Professional observations were performed using an 80 cm telescope equipped with a QHY174M GPS camera. This camera, integrated with a GPS receiver, allows precise time-stamping of each exposure in UTC. Amateur observations were conducted using various telescopes and cameras, with data recorded in video format. The video recordings were processed using a unified method to extract photometric occultation curves. These curves enabled the determination of the precise start and end times of the occultation at each observation site. A proprietary method was applied to combine occultation data from geographically dispersed locations, where observations had been independently acquired. This method facilitated the estimation of the relative positions of observation sites with respect to the centerline of the occultation path. Using this technique, chords corresponding to the asteroid’s silhouette at the beginning and end of the occultation were calculated for all observation points. These chords were then compared with the asteroid’s 3D shape model from the Database of Asteroid Models from Inversion Techniques (DAMIT). The results validate the effectiveness of the applied method and demonstrate the feasibility of incorporating amateur observations — even with potential inaccuracies in UTC synchronization — for reconstructing asteroid shapes. Furthermore, the findings confirm the high accuracy of the (52) Europa shape model available in the DAMIT database. |
| Keywords: asteroid (52) Europa, asteroids, occultation method, synchronous observations |
1. Karbovsky V., Kleshchonok V., Buromsky M. (2017) Software and hardware complex for observation of star occultations by asteroids. Bull. Taras Shevchenko Nat. Univ. Kyiv. Astron. 2 (56). 41-44.
https://doi.org/10.17721/BTSNUA.2017.56.41-44
2. Kleshchonok V. V., Karbovsky V. L., Buromsky M. I., Lashko M. V., Gorbanev Yu. M., Kashuba V. I., Kimakovskiy S. R., Shavlovskiy V. I., Angelskiy O. V., Tsekh¬meistrenko V. S., Myshevskiy N. N., Revun A. V. (2022) Occultation of stars by small planets of the Solar System: the state of observation programs in Ukraine. Space sci. and technol. 28(5). 56-66.
https://doi.org/10.15407/knit2022.05.056
3. Al-Lagoa V., Mller T. G., Usui F., Hasegawa S. (2018) The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron. and Astrophys. 612. id. A85, 9.
https://doi.org/10.1051/0004-6361/201731806
4. Dotto E., Mller T. G., Barucci M. A., Encrenaz Th., Knacke R. F., Lellouch E., Doressoundiram A., Crovisier J., Brucato J. R., Colangeli L., Mennella V. (2000) ISO results on bright Main Belt asteroids: PHT-S observations. Astron. and Astrophys. 358. 1133-1141.
5. Durech J., Kaasalainen M., Herald D., Dunham D., Timerson B., Hanu J., Frappa E., Talbot J., Hayamizu T., Warner B. D., Pilcher F., Gald A. (2011) Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes. Icarus. 214(2). 652-670.
https://doi.org/10.1016/j.icarus.2011.03.016
6. Durech J., Sidorin V., Kaasalainen M. (2020) DAMIT: a data base of asteroid models. Astron. and Astrophys. 513, id. A46, 13.
https://doi.org/10.1051/0004-6361/200912693
7. Hanu J., Marchis F., urech J. (2013) Sizes of main-belt asteroids by combining shape models and Keck adaptive optics observations. Icarus. 226(1). 1045-1057.
https://doi.org/10.1016/j.icarus.2013.07.023
8. Hanu J., Viikinkoski M., Marchis F., et al. (2017) Volumes and bulk densities of forty asteroids from ADAM shape modeling. Astron. and Astrophys. 601. A114
https://doi.org/10.1051/0004-6361/201629956
9. Harris A. W. (1998) A thermal model for near-Earth asteroids. Icarus. 131(2). 291-301.
https://doi.org/10.1006/icar.1997.5865
10. Hudson S. (1994). Three-dimensional reconstruction of asteroids from radar observations. Remote Sensing Revs, 8(1-3). 195-203.
https://doi.org/10.1080/02757259309532195
11. Kleshchonok V. (2022) Method of processing synchronous observations of star occultation by an asteroid from several points. Bull. Taras Shevchenko Nat. Univ. Kyiv. Astron. 66. 8-11.
https://doi.org/10.17721/BTSNUA.2022.66.8-11
12. Kleshchonok V. V., Karbovsky V. L., Buromsky M. I., Lashko M. V. (2021) Observation of stellar occultations by asteroid (259) Alethea and comet 21P/Jacobini - Zinner. Kinematics and Phys. Celestial Bodies. 37(1). 41-51.
https://doi.org/10.3103/S0884591321010025
13. Lebofsky L. A., Spencer J. (1989) Radiometry and thermal modeling of asteroids, in Asteroids II, eds R. P. Binzel, T. Gehrels, M. S. Matthews. Tucson: Univ. Arizona Press, 1989. 128-147.
14. Marchis F., Kaasalainen M., Hom E. F. Y., Berthier J., Enriquez J., Hestroffer D., Le Mignant D., de Pater I. (2006) Shape, size and multiplicity of main-belt asteroids. I. Keck Adaptive Optics survey. Icarus. 185(1). 39-63.
https://doi.org/10.1016/j.icarus.2006.06.001
15. Masiero J. R., Mainzer A. K., Grav T., Bauer J. M., Cutri R. M., Dailey J., Eisenhardt P. R. M., McMillan R. S., Spahr T. B., Skrutskie M. F., Tholen D., Walker R. G., Wright E. L., DeBaun E., Elsbury D., Gautier T., Gomillion S., Wilkins A. (2011) Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophys. J. 741(2), id. 68, 20.
https://doi.org/10.1088/0004-637X/741/2/68
16. Masiero J. R., Mainzer A. K., Grav T., Bauer J. M., Cutri R. M., Nugent C., Cabrera M. S. (2012) Preliminary analysis of WISE/NEOWISE 3-band cryogenic and post-cryogenic observations of Main Belt asteroids. Astrophys. J. Lett. 759(1) id. L8, 5.
https://doi.org/10.1088/2041-8205/759/1/L8
17. Merline W. J., Drummond J. D., Carry B., Conrad A., Tamblyn P. M., Dumas C., Kaasalainen M., Erikson A., Mottola S., urech J., Rousseau G., Behrend R., Casalnuovo G. B., Chinaglia B., Christou J. C., Chapman C. R., Neyman C. (2013) The resolved asteroid program - size, shape, and pole of (52) Europa. Icarus. 225. 794-805.
https://doi.org/10.1016/j.icarus.2013.01.010
18. Nugent C. R., Mainzer A., Bauer J., Cutri R. M., Kramer E. A., Grav T., Masiero J., Sonnett S., Wright E. L. (2016) NEOWISE reactivation mission year two: Asteroid diameters and albedos. Astron. J. 152(3). id. 63, 12.
https://doi.org/10.3847/0004-6256/152/3/63
19. Ryan E. L., Woodward C. E. (2010) Rectified asteroid albedos and diameters from IRAS and MSX photometry catalogs. Astron. J. 140(4). 933-943.
https://doi.org/10.1088/0004-6256/140/4/933
20. Souami D., Sfair R., Renner S., El Moutamid M. (2025) Stellar occultations: a gateway to advances in planetary science Phil. Trans. R. Soc. A. 383, 20240202.
https://doi.org/10.1098/rsta.2024.0202
21. Tedesco E. F., Noah P. V., Noah M., Price S. D. (2002) The supplemental IRAS minor planet survey. Astron. J. 123(2). 1056-1085.
https://doi.org/10.1086/338320
22. Usui F., Kuroda D., Mller T. G., Hasegawa S., Ishiguro M., Ootsubo T., Ishihara D., Kataza H., Takita S., Oyabu S., Ueno M., Matsuhara H., Onaka T. (2011) Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publ. Astron. Soc. Jap. 63(5). 1117-1138.
https://doi.org/10.1093/pasj/63.5.1117
23. Zielenbach W. (2011) Mass determination studies of 104 large asteroids. Astron. J. 142, Iss. 4, id. 120, 8 pp.
https://doi.org/10.1088/0004-6256/142/4/120
