On the possible changes in the physical characteristics of the aerosol in the deep layers of the atmosphere of Saturn

1Ovsak, AS
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(1):42-56
https://doi.org/10.15407/kfnt2019.01.042
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

This work is devoted to determining the values of the physical parameters of cloud particles in the deep layers of the Saturn's atmosphere using data from remote measurements of the solar radiation field diffusely reflected by a giant planet. In the previous study, using the effective optical depth method, from the spectral measurements of the geometric albedo of Saturn in 1993 in the wavelength range 300...1000 nm, the author obtained a pressure dependence, i. e. change with altitude in the atmosphere values of the magnitude of the aerosol scattering component of the optical depth. The analysis of the initial data was performed in the long-wave part of the spectrum in methane absorption lines of different power with centers at wavelengths of = 619, 727, 842, 864, and 887 nm. At certain altitude levels in the deep layers of the atmosphere of the giant planet, the indicated dependence shows features that possibly reflect changes of the physical characteristics of the aerosol. Therefore, the aim of this work was to determine the possible values of the physical parameters of aerosol particles in the deep layers of Saturn's atmosphere at altitudinal levels, with the features noted above. As a result, an increase in the effective radius of cloud particles was observed in the transition from the outer to the deeper layers of the atmosphere of giant planet: from the 1.4 μm in the upper part of the troposphere, to the 1.83 μm in the altitude region with a pressure of 1.0...1.25 bar and up to 2.2...2.4 μm in the region with a pressure of 1.5...2.0 bar. In the latter segment, a decrease in the real part of the refractive index of aerosol particles by 3.5 % was revealed. A possible reason for this decrease is the change in the phase state of aerosol particles in the lower and warmer atmospheric layers of Saturn, due to the presence of ammonium hydroxide in their composition in sufficient concentration.

Keywords: aerosol particles, atmosphere, deep layers, physical parameters, Saturn
References: 

1. Bugaenko O. I., Dlugach Zh. M., Morozhenko A. V., Yanovitsky E. G.  (1975) Optical properties of Saturn's cloud layer in the visible spectral region. Astronomicheskii Vestnik, 9(1), 13-21  (in Russian).

2. Atreya S. K., Wong A. S. (2005) Coupled clouds and chemistry of the giant planets — a case for multiprobes. Space Sci. Revs, 116(1), 121—136.
https://doi.org/10.1007/s11214-005-1951-5

3. Chamberlain J. W. (1965) The atmosphere of Venus near cloud top. Astrophys. J., 141(4), 1184—1205.
https://doi.org/10.1086/148207

4. Fletcher L. N., Baines K. H., Momary T. W., Showman A. P., Irwin P. G. J., Orton G. S., Merlet C. (2011) Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6 - 5.1 μm nightside spectroscopy. Icarus, 214, 510—533.
https://doi.org/10.1016/j.icarus.2011.06.006

5. Fletcher L. N., Guerlet S., Orton G. S., Cosentino R. G., Fouchet T., Irwin P. G. J., Li L., Flasar F. M., Gorius N., Morales-Juberías R. (2017) Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm. Nature Astron., 1, 765— 770.
https://doi.org/10.1038/s41550-017-0271-5

6. Hildenbrand D. L., Giauque W. F. (1953) Ammonium oxide and ammonium hydroxide. Heat capacities and thermodynamic properties from 15 to 300 K. 1. J. Amer. Chem. Soc., No. 75, 2811—2818.
https://doi.org/10.1021/ja01108a007

7. Karkoschka E. ( 1994) Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum. Icarus, 111, 967—982.
https://doi.org/10.1006/icar.1994.1139

8. Karkoschka E., Tomasko M. G. (2005) Saturn’s vertical and latitudinal cloud structure 1991—2004 from HST imaging in 30 filters. Icarus, 179, 195—221.
https://doi.org/10.1016/j.icarus.2005.05.016

9. Kawata K. (1978) Circular polarization of sunlight reflected by planetary atmosphere. Icarus, 33, 217—233.
https://doi.org/10.1016/0019-1035(78)90035-0

10. Kerola D. X., Larson H. P., Tomasko M. G. (1997) Analysis of the near-IR spectrum of Saturn: A comprehensive radiative transfer model of its middle and upper troposphere. Icarus, 127, 190—212.
https://doi.org/10.1006/icar.1997.5688

11. Lindal G. F. (1992) The atmosphere of Neptune: an analysis of radio occultation data with Voyager 2. Astron. J., 103, 967—982.
https://doi.org/10.1086/116119

12. Muñoz O., Morena F., Molina A., Grodent D., Gérard J. C., Dols V. (2004) Study of the vertical structure of Saturn’s atmosphere using HST/WFPC2 images. Icarus, 169, 413—428.
https://doi.org/10.1016/j.icarus.2003.12.018

13. Morozhenko A. V. (1984) Jovian cloud stratification. Sov. Astron. Lett., 10, 323— 325.

14. Morozhenko A. V. (1993) On the vertical structure of cloud layers in the atmospheres of giant planets. Kinematics Phys. Celestial. Bodies, 9, 1—19.

15. Morozhenko A. V., Ovsak A. S. (2017) On the probable change of the radius and nature of aero­sol particles in the deep layers of Jupiter’s atmosphere. Kinematics Phys. Celestial. Bodies, 33, 88—93.
https://doi.org/10.3103/S0884591317020052

16. Ovsak A. S. (2013) Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets. Kinematics Phys. Celestial. Bodies, 29, 291—300.
https://doi.org/10.3103/S0884591313060056

17. Ovsak А. S. (2015) Variations of the volume scattering coefficient of aerosol in the jovian atmosphere from observations of the planetary disk. Kinematics Phys. Celestial. Bodies, 31, 197—204.
https://doi.org/10.3103/S0884591315040066

18. Ovsak A. S. (2015) Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics. Solar Syst. Res., 49, 46—53.
https://doi.org/10.1134/S0038094615010050

19. Ovsak А. S. (2018) On determining the vertical structure of the aerosol component in the atmosphere of Saturn. Kinematics Phys. Celestial. Bodies, 34, 37—51.
https://doi.org/10.3103/S088459131801004X

20. Ovsak A. S. (2018) The altitudinal dependence of aerosol volume scattering coefficient in the atmosphere of Saturn in 1993. 49th Lunar and Planet. Sci. Conf. LPSC2018, abstract # 1069.

21. Pérez-Hoyos S., Sánchez-Lavega A., French R. G., Rojas J. F. (2005) Saturn’s cloud structure and temporal evolution from 10 years of Hubble Space Telescope images (1994—2003). Icarus, 176, 155—174.
https://doi.org/10.1016/j.icarus.2005.01.014

22. Roman M. T., Banfield Don, Gierasch P. J. (2013) Saturn’s cloud structure inferred from Cassini ISS. Icarus, 225, 93—110.
https://doi.org/10.1016/j.icarus.2013.03.015

23. Sánchez-Lavega A., Hueso R., Pérez-Hoyos S. (2007) The three-dimensional structure of Saturn’s equatorial jet at cloud level. Icarus, 187, 510—519.
https://doi.org/10.1016/j.icarus.2006.10.022

24. Santer R., Dollfus A. (1981) Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn. Icarus, 48, 496—518.
https://doi.org/10.1016/0019-1035(81)90060-9

25. Sromovsky L. A., Baines K. H., Fry P. M. (2013) Saturn’s Great Storm of 2010—2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus, 226, 402—408.
https://doi.org/10.1016/j.icarus.2013.05.043

26. Sromovsky L. A., Baines K. H., Fry P. M., Momary T. W. (2016) Cloud clearing in the wake of Saturn’s Great Storm of 2010—2011 and suggested new constraints on Saturn’s He/H2 ratio. Icarus, 276, 141—162.
https://doi.org/10.1016/j.icarus.2016.04.031

27. Temma T., Chanover N. J., Simon-Miller A. A., et al. (2005) Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging. Icarus, 175, 464—489.
https://doi.org/10.1016/j.icarus.2004.11.006