Kinetic propagation of charged particles in the magnetic field under various directions of their injection

Heading: 
1Shakhov, BA, 1Fedorov, YI, 1Kolesnyk, YL
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(4):3-20
https://doi.org/10.15407/kfnt2019.04.003
Start Page: Space Physics
Language: Russian
Abstract: 

The energetic charged particle propagation in magnetic field, which is a superposition of the mean homogeneous magnetic field and magnetic inhomogeneities of various scales, is considered on the basis of the Fokker-Planck kinetic equation. The analytical expression for the cosmic ray distribution function corresponding to instantaneous particle injection in the direction, which is perpendicular to the regular magnetic field, is obtained. Under particle emission along the mean magnetic field the kinetic equation solution in the small angle approximation is applied. It is shown that the spatial-temporal cosmic ray distribution depends substantially on the particle injection direction. The evolution of the angular distribution of solar cosmic rays is analyzed on the basis of derived kinetic equation solutions.

Keywords: cosmic rays, diffusion, kinetic equation
References: 

1. Galperin B. A., Toptygin I. N., Fradkin A. A. (1971) Rasseyaniye chastits magnitnymi neodnorodnostyami v sil’nom magnitnom pole. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 60, № 3. P. 972. (in Russian)

2. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. (1981) Integraly i ryady. M., Nauka. 800 p. (in Russian)

3. Toptygin I. N. (1972) O vremennoy zavisimosti intensivnosti kosmicheskikh luchey na anizotropnoy stadii solnechnykh vspyshek. Geomagnetizm i Aeronomiia. 1972. 12. P. 989. (in Russian)

4. Toptygin I. N. (1983) Kosmicheskiye luchi v mezhplanetnykh magnitnykh polyakh. M. Nauka, 304 p. (in Russian)

5. Beeck J., Wibberenz G. (1986) Pitch angle distributions of solar energetic particles and the local scattering properties of the interplanetary medium. Astrophys. J. 311. P. 437.
https://doi.org/10.1086/164784

6. Bieber J. W., Evenson P. A., Pomerantz M. A. (1986) Focusing anisotropy of solar cosmic rays. J. Geophys. Res. 91, № A8. P. 8713.
https://doi.org/10.1029/JA091iA08p08713

7. Cramp J. L., Duldig M. L., Fluckiger E. O., Humble J. E., Shea M. A., Smart D. F. (1997) The October 22, 1989 solar cosmic ray enhancement: An analysis of the anisotropy and spectral characteristics. J. Geophys. Res. 102, № A11. P. 24237—24248.
https://doi.org/10.1029/97JA01947

8. Debrunner H., Fluckiger E., Gradel H., Lockwood J. A., McGuire R. E. (1988) Observations related to the acceleration, injection, and interplanetary propagation of energetic particles during the solar cosmic ray event on February 16, 1984. J. Geophys. Res. 93(A7). P. 7206—7216.
https://doi.org/10.1029/JA093iA07p07206

9. Debrunner H., Lockwood J. A., Ryan J. M. (1992) The solar flare event on 1990 May 24: Evidence for two separate particle acceleration. Astrophys. J. 387. P. L51— L54.
https://doi.org/10.1086/186303

10. Dorman L. I., Katz M. E. (1977) Cosmic ray kinetics in space. Space Sci. Rev. 70. P. 529—575.
https://doi.org/10.1007/BF02186896

11. Earl J. A. (1973) Diffusion of charged particles in a random magnetic field. Astrophys. J. 180. P. 227.
https://doi.org/10.1086/151957

12. Earl J. A. (1994) New description of charged particle propagation in random magnetic field. Astrophys. J. 425. P. 331.
https://doi.org/10.1086/173988

13. Effenberger F., Litvinenko Y. (2014) The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. 1. Isotropic pitch angle scattering. Astrophys. J. 783. P. 15.
https://doi.org/10.1088/0004-637X/783/1/15

14. Fedorov Yu. I., Shakhov B. A., Stehlik M. (1995) Non-diffusive transport of cosmic rays in homogeneous regular magnetic fields. Astron. Astrophys. 302, № 2. P. 623— 634.

15. Fedorov Yu. I., Shakhov B. A. (2003) Description of non-diffusive cosmic ray propagation in a homogeneous regular magnetic field. Astron. Astrophys. 402. P. 805.
https://doi.org/10.1051/0004-6361:20030169

16. Fedorov Yu. I. (2018) Intensity of cosmic rays at the initial stage of a solar flare. Kinematics Physics of Celest. Bodies. 34. P. 1—12.
https://doi.org/10.3103/S0884591318010038

17. Gombosi T. J., Jokipii J. R., Kota J., et al. (1993) The telegraph equation in charged particle transport. Astrophys. J. 403. P. 377.
https://doi.org/10.1086/172209

18. Hasselmann K., Wibberenz G. (1968) Scattering of charged particles by random electro¬magnetic fields. Z. Geophys. 34. P. 353.

19. Hasselmann K., Wibberenz G. (1970) A note of the parallel diffusion coefficient. Astrophys. J. 162. P. 1049.
https://doi.org/10.1086/150736

20. Jokipii J. R. (1966) Cosmic ray propagation. 1. Charged particle in a random magnetic field. Astrophys. J. 146. P. 480.
https://doi.org/10.1086/148912

21. Kagashvili E. Kh., Zank G. P., Lu J. Y., Droge W. (2004) Transport of energetic charged particles. 2. Small-angle scattering. J. Plasma Phys. 70, part. 5. P. 505—532.
https://doi.org/10.1017/S0022377803002745

22. Kota J. (1994) Coherent pulses in the diffusive transport of charged particles. Astrophys. J. 427, № 2. P. 1035—1080.
https://doi.org/10.1086/174209

23. Litvinenko Yu. E., Noble P. L. (2016) Comparison of the telegraph and hyperdiffusion approximations in cosmic ray transport. Phys. Plasmas. 23. 062901 (8 p.).
https://doi.org/10.1063/1.4953564

24. Malkov M. A., Sagdeev R. Z. (2015) Cosmic ray transport with magnetic focusing and the “telegraph” model. Astrophys. J. 808. P. 157.
https://doi.org/10.1088/0004-637X/808/2/157

25. Malkov M. A. (2017) Exact solution of the Fokker-Planck equation for isotropic scattering. Phys. Rev. D. 95. P. 023007.
https://doi.org/10.1103/PhysRevD.95.023007

26. McCracken K. G., Moraal H., Stoker P. H. (2008) Investigation of the multi-component structure of the 20 January 2005 cosmic ray ground level enhancement. J. Geophys. Res. 113. P. A12101 (18 p.).
https://doi.org/10.1029/2007JA012829

27. Miroshnichenko L. I.,Vashenyuk E. V., Perez-Peraza J. A. (2013) Solar cosmic rays: 70 years of ground-based observations. Geomagnetizm and Aeronomy. 53. P. 541— 560.
https://doi.org/10.1134/S0016793213050125

28. Moraal H., McCracken K. G. (2012) The time structure of ground level enhancement in solar cycle 23. Space Sci. Rev. 171. P. 85—95.
https://doi.org/10.1007/s11214-011-9742-7

29. Nemzek R. J., Belian A. D., Cayton T. E., Reaves G. D. (1994) The October 22, 1989 solar cosmic ray event measured at geosynchronous orbit. J. Geophys. Res. 99, № A3. P. 4221—4226.
https://doi.org/10.1029/93JA03254

30. Shakhov B. A., Stehlik M. (2003) The Fokker-Planck equation in the second order pitch angle approximation and its exact solution. J. Quant. Spectr. Radiative Transfer. 78. P. 31—39.
https://doi.org/10.1016/S0022-4073(02)00175-9

31. Shea M. A., Smart D. F. (1982) Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci. Rev. 32. P. 251—271.
https://doi.org/10.1007/BF00225188

32. Shea M. A., Smart D. F. (1997) Dual acceleration and/or release of relativistic solar cosmic rays. Proc. 25-th Intern. Cosmic Ray Conf., Durban, South Africa. v. 1. P. 129—132.

33. Vashenyuk E. V., Balabin Yu. V., Perez-Peraza J., Gallegos-Cruz A., Miroshnichenko L. I. (2006) Some features of the sources of relativistic particles at the Sun in the solar cycles 21-23. Adv. Space Res. 38. P. 411—417.
https://doi.org/10.1016/j.asr.2005.05.012

34. Webb G. M., Pantazopolou M., Zank G. P. (2000) Multiple scattering and the BGK Boltzmann equation. J. Phys. A Math. Gen. 33. P. 3137—3160.
https://doi.org/10.1088/0305-4470/33/16/307