Attenuation of evanescent acoustic-gravity modes in the Earth thermosphere
1Cheremnykh, OK, 1Fedorenko, AK, Kryuchkov, EI, Vlasov, DI, 1Zhuk, IT 1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(5):3-17 |
https://doi.org/10.15407/kfnt2021.05.003 |
Start Page: Dynamics and Physics of Solar System Bodies |
Language: Ukrainian |
Abstract: The damping of the acoustic-gravity non-divergent f-mode and inelastic γ-mode in the Earth's upper atmosphere due to viscosity and thermal conductivity was studied.We used the system of hydrodynamic equations including modified Navier-Stokes and heat transfer equations to analyze the damping. The contribution of the background density gradient to the transfer of energy and momentum by waves are taken into account in these modified equations. Dispersion equations for f- and γ-modes in an isothermal dissipative atmosphere are obtained. We have shown that viscosity and thermal conductivity insignificantly affect the frequency shift of these modes under typical thermosphere conditions. Expressions for the damping decrements of the f- and γ-modes are obtained. It was found that the damping decrement of the γ-mode exceeds the corresponding decrement of the f-mode by almost an order of magnitude in the terrestrial thermosphere. Also it was found that the f-mode damping isn't depended on thermal conductivity but is due only to dynamic viscosity. Moreover, the f-mode damping increases with an increase in the relative contribution of bulk viscosity. The dissipation of the γ-mode is caused by dynamic viscosity and thermal conductivity and isn't depended on the bulk viscosity. We considered the time variation of the perturbation amplitudes for the f- and γ-modes at different heights of the thermosphere. The characteristic decay times of the f- and γ-modes at different heights depending on the wavelength, as well as at different levels of solar activity were obtained. We have determined the boundary heights in the thermosphere above which the f- and γ-modes cannot exist due to dissipation. |
Keywords: acoustic-gravity wave, atmosphere, evanescent wave mode, molecular viscosity, thermal conductivity |
1. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Gostekhizdat, Moscow, 1986; Pergamon, Oxford, 1987).
2. G. V. Lizunov and A. Yu. Leont’ev. Height of the penetration into the ionosphere for internal atmospheric gravity waves, Kosm. Nauka Tekhnol. 20 (4), 31–41 (2014).
https://doi.org/10.15407/knit2014.04.031
3. A. K. Fedorenko and E. I. Kryuchkov. Distribution of medium scale acoustic gravity waves in polar regions according to satellite measurement data, Geomagn. Aeron. (Engl. Transl.) 51, 520–533 (2011).
https://doi.org/10.1134/S0016793211040128
4. A. K. Fedorenko and E. I. Kryuchkov. Wind control of the propagation of acoustic gravity waves in the polar atmosphere, Geomagn. Aeron. (Engl. Transl.) 53, 377–388 (2013).
https://doi.org/10.1134/S0016793213030055
5. A. K. Fedorenko and E. I. Kryuchkov. Observed features of acoustic gravity waves in the heterosphere, Geomagn. Aeron. (Engl. Transl.) 54, 116–123 (2014).
https://doi.org/10.1134/S0016793214010022
6. A. K. Fedorenko, E. I. Kryuchkov, and O. K. Cheremnikh. Attenuation of acoustic-gravity waves in an isothermal atmosphere: Consideration with the modified Navier–Stokes and heat-transfer equations, Kinematics Phys. Celestial Bodies 36, 212–221 (2020).
https://doi.org/10.3103/S0884591320050049
7. T. Beer, Atmospheric Waves (Wiley, New York, 1974).
8. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov. Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth’s and Solar atmospheres, Ann. Geophys. 37, 405–415 (2019).
https://doi.org/10.5194/angeo-37-405-2019
9. O. K. Cheremnykh, A. K. Fedorenko, Y. A. Selivanov, and S. O. Cheremnykh. Continuous spectrum of evanescent acoustic-gravity waves in an isothermal atmosphere, Mon. Not. R. Astron. Soc. 503, 5545–5553 (2021).
https://doi.org/10.1016/j.asr.2021.10.050
10. M. S. Cramer. Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids 24, 066102 (2012).
https://doi.org/10.1063/1.4729611
11. A. Dalgarno and F. J. Smith. The thermal conductivity and viscosity of atomic oxygen, Planet. Space Sci. 9, 1–2 (1962).
https://doi.org/10.1016/0032-0633(62)90064-8
12. J. J. Dudis and C. A. Reber. Composition effects in thermospheric gravity waves, Geophys. Res. Lett. 3, 727–730 (1976).
https://doi.org/10.1029/GL003i012p00727
13. A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, and Y. A. Selivanov. Dissipation of acoustic–gravity waves in the Earth’s thermosphere, J. Atmos. Terr. Phys. 212, 105488 (2021).
https://doi.org/10.1016/j.jastp.2020.105488
14. S. H. Francis. Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys. 37, 1011–1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4
15. C. O. Hines. Internal gravity waves at ionospheric heights, Can. J. Phys. 38, 1441–1481 (1960).
https://doi.org/10.1139/p60-150
16. L. Jones Walter. Non-divergent oscillations in the solar atmosphere, Sol. Phys. 7, 204–209 (1969).
https://doi.org/10.1007/BF00224898
17. P. Kundu, Fluid Dynamics (Elsevier, New York, 1990).
18. A. Roy, S. Roy, and A. P. Misra. Dynamical properties of acoustic-gravity waves in the atmosphere, J. Atmos. Sol.-Terr. Phys. 186, 78–81 (2019).
https://doi.org/10.1016/j.jastp.2019.02.009
19. S. L. Vadas and M. J. Fritts. Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res.: Atmos. 110, D15103 (2005).
https://doi.org/10.1029/2004JD005574
20. S. L. Vadas and D. C. Nicolls. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory, J. Geophys. Res.: Space Phys. 117, A05322 (2012).
https://doi.org/10.1029/2011JA017426
21. R. L. Waltercheid and J. H. Hecht. A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance, J. Geophys. Res.: Atmos. 108, 4340 (2003).
https://doi.org/10.1029/2002JD002421