The modulation of galactic cosmic ray intensity in the small anisotropy approximation

Рубрика: 
Fedorov, YI, Shakhov, BO, Kolesnyk, YL
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(4):3-16
https://doi.org/10.15407/kfnt2022.04.003
Start Page: Space Physics
Язык: Ukrainian
Аннотация: 

The cosmic ray propagation in the interplanetary medium is investigated on the base of transport equation. The solution of the cosmic ray transport equation is obtained under known energetic distribution of charged energetic particles on the heliosphere boundary. The galactic cosmic ray spectrum in the local interstellar medium is taken on the base of data obtained by Voyager 1 and Voyager 2 spacecrafts. The galactic cosmic ray flux in various solar activity periods is calculated. The estimates of cosmic ray intensity gradients are made and comparison of these calculations with space missions data are fulfilled. The calculations of the cosmic ray angular distribution anisotropy are made. It is shown that galactic cosmic ray flux at the Earth orbit has an azimuthally direction and the anisotropy value of protons with energies from 1 MeV to 1 GeV roughly corresponds to 0.5 %.

Ключевые слова: cosmic rays, heliospheric magnetic field, transport equation
References: 

1. Dolginov A. Z., Toptygin I. N. (1966) Multiple scattering of particles in a magnetic field with random inhomogeneities. JETP. 51(6). 1771.

2. Dorman L. I., Kats M. E., Fedorov Yu. I., Shakhov B. A. (1980) On the energy balance of charged particles under multiple scattering in a randomly inhomogeneous magnetic field. JETP. 79(4). 1267.

3. Krymskii G. F. (1964) Diffusion mechanism of diurnal variation of cosmic rays. Geomagnetism and Aeronomy. 4(6). 977.

4. Shakhov B. A., Kolesnik Yu. L. (2006) Iteration method for solution of cosmic ray propagation theory boundary problems. Kinematics and Phys. Celest. Bodies. 22(2). 100.

5. Caballero-Lopez R. A., Moraal H. (2004) Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. 109. A01101.
https://doi.org/10.1029/2003JA010098

6. Dorman L. I., Katz M. E. (1977) Cosmic ray kinetics in space. Space Sci. Rev. 20. 529.
https://doi.org/10.1007/BF02186896

7. Fedorov Yu. I. (2017) Propagation of galactic cosmic rays in the outer heliosphere. Kinemat. and Phys. Celestial Bodies. 33(2). 63.
https://doi.org/10.3103/S0884591317020039

8. Fedorov Yu. I., Stehlik M. (2017) The modulation of galactic cosmic ray intensity in the outer heliosphere. Solar Phys. 2017. 293, 119.
https://doi.org/10.1007/s11207-017-1141-0

9. Gleeson L. J., Axford W. I. (1968) Solar modulation of galactic cosmic rays. Astrophys. J. 159. 1011.
https://doi.org/10.1086/149822

10. Heber B. (2013) Cosmic rays through the Solar Hale Cycle. Insights from Ulysses. Space Sci. Rev. 176. 265.
https://doi.org/10.1007/s11214-011-9784-x

11. Heber B., Droege W., Ferrando P., et al. (1996) Spatial variation of > 40 MeV/n nuclei fluxes observed during Ulysses rapid latitude scan. Astron. and Astrophys. 316. 538.

12. Heber B., Potgieter M. S. (2006) Cosmic rays at high heliolatitudes. Space Sci. Rev. 127. 117.
https://doi.org/10.1007/s11214-006-9085-y

13. Kolesnyk Yu. L., Shakhov B. A. (2012) Effect of the heliosheath and standing termination shock on galactic cosmic ray propagation in a stationary heliosphere. Kinemat. Phys. Celest Bodies. 28. 261.
https://doi.org/10.3103/S0884591312060049

14. Kolesnyk Yu. L., Bobik P., Shakhov B. A., Putis M. (2017) An analytically iterative method for solving problems of cosmic ray modulation. Monthly Not. Royal Astron. Soc. 470. 1073.
https://doi.org/10.1093/mnras/stx1202

15. Kolesnyk Yu. L., Shakhov B. A., Bobik P., Putis M. (2020) An exact solution of cosmic ray modulation problem in a stationary composite heliosphere model. Monthly Not. Royal Astron. Soc. 491. 5826.
https://doi.org/10.1093/mnras/stz3343

16. McKibben R. B. (1998) Three-dimensial solar-modulation of cosmic rays and anomalous components in the inner heliosphere. Space Sci. Rev. 83. 21.
https://doi.org/10.1007/978-94-017-1189-0_3

17. McKibben R. B., Connel J. J., Lopate C., Simpson J. A., Zhang M. (1996) Observations of galactic cosmic rays and the anomalous helium during Ulysses passage from the south to the north solar pole. Astron. and Astrophys. 316. 547.

18. Moraal H. (2013) Cosmic ray modulation equation. Space Sci Rev. 176. 299
https://doi.org/10.1007/s11214-011-9819-3

19. Parker E. N. (1958) Dynamics of the interplanetary gas and field. Astrophys. J. 128. 644.
https://doi.org/10.1086/146579

20. Parker E. N. (1965) The passage of energetic charged particles through interplanetary space. Planet Space Sci. 13. 9.
https://doi.org/10.1016/0032-0633(65)90131-5

21. Potgieter M. S. (2013) Very local interstellar spectra for galactic electrons, protons and helium arxiv: 2013. 1310. 6133 [astro-ph].
https://doi.org/10.1142/9789814603164_0031

22. Urch I. H., Gleeson L. J. (1972) Galactic cosmic ray modulation from 1965-1970. Astrophys. Space Sci. 17. 426.
https://doi.org/10.1007/BF00642912

23. Vos E. E., Potgieter M. S. (2015) New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J. 815. 119.
https://doi.org/10.1088/0004-637X/815/2/119